ترغب بنشر مسار تعليمي؟ اضغط هنا

A Master Key Backdoor for Universal Impersonation Attack against DNN-based Face Verification

110   0   0.0 ( 0 )
 نشر من قبل Wei Guo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new attack against face verification systems based on Deep Neural Networks (DNN). The attack relies on the introduction into the network of a hidden backdoor, whose activation at test time induces a verification error allowing the attacker to impersonate any user. The new attack, named Master Key backdoor attack, operates by interfering with the training phase, so to instruct the DNN to always output a positive verification answer when the face of the attacker is presented at its input. With respect to existing attacks, the new backdoor attack offers much more flexibility, since the attacker does not need to know the identity of the victim beforehand. In this way, he can deploy a Universal Impersonation attack in an open-set framework, allowing him to impersonate any enrolled users, even those that were not yet enrolled in the system when the attack was conceived. We present a practical implementation of the attack targeting a Siamese-DNN face verification system, and show its effectiveness when the system is trained on VGGFace2 dataset and tested on LFW and YTF datasets. According to our experiments, the Master Key backdoor attack provides a high attack success rate even when the ratio of poisoned training data is as small as 0.01, thus raising a new alarm regarding the use of DNN-based face verification systems in security-critical applications.



قيم البحث

اقرأ أيضاً

Speaker verification has been widely and successfully adopted in many mission-critical areas for user identification. The training of speaker verification requires a large amount of data, therefore users usually need to adopt third-party data ($e.g.$ , data from the Internet or third-party data company). This raises the question of whether adopting untrusted third-party data can pose a security threat. In this paper, we demonstrate that it is possible to inject the hidden backdoor for infecting speaker verification models by poisoning the training data. Specifically, we design a clustering-based attack scheme where poisoned samples from different clusters will contain different triggers ($i.e.$, pre-defined utterances), based on our understanding of verification tasks. The infected models behave normally on benign samples, while attacker-specified unenrolled triggers will successfully pass the verification even if the attacker has no information about the enrolled speaker. We also demonstrate that existing backdoor attacks cannot be directly adopted in attacking speaker verification. Our approach not only provides a new perspective for designing novel attacks, but also serves as a strong baseline for improving the robustness of verification methods. The code for reproducing main results is available at url{https://github.com/zhaitongqing233/Backdoor-attack-against-speaker-verification}.
84 - Yiming Li , Yanjie Li , Yalei Lv 2021
Deep neural networks (DNNs) are vulnerable to the emph{backdoor attack}, which intends to embed hidden backdoors in DNNs by poisoning training data. The attacked model behaves normally on benign samples, whereas its prediction will be changed to a pa rticular target label if hidden backdoors are activated. So far, backdoor research has mostly been conducted towards classification tasks. In this paper, we reveal that this threat could also happen in semantic segmentation, which may further endanger many mission-critical applications ($e.g.$, autonomous driving). Except for extending the existing attack paradigm to maliciously manipulate the segmentation models from the image-level, we propose a novel attack paradigm, the emph{fine-grained attack}, where we treat the target label ($i.e.$, annotation) from the object-level instead of the image-level to achieve more sophisticated manipulation. In the annotation of poisoned samples generated by the fine-grained attack, only pixels of specific objects will be labeled with the attacker-specified target class while others are still with their ground-truth ones. Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data. Our method not only provides a new perspective for designing novel attacks but also serves as a strong baseline for improving the robustness of semantic segmentation methods.
Facial verification systems are vulnerable to poisoning attacks that make use of multiple-identity images (MIIs)---face images stored in a database that resemble multiple persons, such that novel images of any of the constituent persons are verified as matching the identity of the MII. Research on this mode of attack has focused on defence by detection, with no explanation as to why the vulnerability exists. New quantitative results are presented that support an explanation in terms of the geometry of the representations spaces used by the verification systems. In the spherical geometry of those spaces, the angular distance distributions of matching and non-matching pairs of face representations are only modestly separated, approximately centred at 90 and 40-60 degrees, respectively. This is sufficient for open-set verification on normal data but provides an opportunity for MII attacks. Our analysis considers ideal MII algorithms, demonstrating that, if realisable, they would deliver faces roughly 45 degrees from their constituent faces, thus classed as matching them. We study the performance of three methods for MII generation---gallery search, image space morphing, and representation space inversion---and show that the latter two realise the ideal well enough to produce effective attacks, while the former could succeed but only with an implausibly large gallery to search. Gallery search and inversion MIIs depend on having access to a facial comparator, for optimisation, but our results show that these attacks can still be effective when attacking disparate comparators, thus securing a deployed comparator is an insufficient defence.
451 - Haoliang Li 2020
Deep neural networks (DNN) have shown great success in many computer vision applications. However, they are also known to be susceptible to backdoor attacks. When conducting backdoor attacks, most of the existing approaches assume that the targeted D NN is always available, and an attacker can always inject a specific pattern to the training data to further fine-tune the DNN model. However, in practice, such attack may not be feasible as the DNN model is encrypted and only available to the secure enclave. In this paper, we propose a novel black-box backdoor attack technique on face recognition systems, which can be conducted without the knowledge of the targeted DNN model. To be specific, we propose a backdoor attack with a novel color stripe pattern trigger, which can be generated by modulating LED in a specialized waveform. We also use an evolutionary computing strategy to optimize the waveform for backdoor attack. Our backdoor attack can be conducted in a very mild condition: 1) the adversary cannot manipulate the input in an unnatural way (e.g., injecting adversarial noise); 2) the adversary cannot access the training database; 3) the adversary has no knowledge of the training model as well as the training set used by the victim party. We show that the backdoor trigger can be quite effective, where the attack success rate can be up to $88%$ based on our simulation study and up to $40%$ based on our physical-domain study by considering the task of face recognition and verification based on at most three-time attempts during authentication. Finally, we evaluate several state-of-the-art potential defenses towards backdoor attacks, and find that our attack can still be effective. We highlight that our study revealed a new physical backdoor attack, which calls for the attention of the security issue of the existing face recognition/verification techniques.
170 - Lun Wang , Zaynah Javed , Xian Wu 2021
Recent research has confirmed the feasibility of backdoor attacks in deep reinforcement learning (RL) systems. However, the existing attacks require the ability to arbitrarily modify an agents observation, constraining the application scope to simple RL systems such as Atari games. In this paper, we migrate backdoor attacks to more complex RL systems involving multiple agents and explore the possibility of triggering the backdoor without directly manipulating the agents observation. As a proof of concept, we demonstrate that an adversary agent can trigger the backdoor of the victim agent with its own action in two-player competitive RL systems. We prototype and evaluate BACKDOORL in four competitive environments. The results show that when the backdoor is activated, the winning rate of the victim drops by 17% to 37% compared to when not activated.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا