ﻻ يوجد ملخص باللغة العربية
Deep neural networks (DNNs) are vulnerable to the emph{backdoor attack}, which intends to embed hidden backdoors in DNNs by poisoning training data. The attacked model behaves normally on benign samples, whereas its prediction will be changed to a particular target label if hidden backdoors are activated. So far, backdoor research has mostly been conducted towards classification tasks. In this paper, we reveal that this threat could also happen in semantic segmentation, which may further endanger many mission-critical applications ($e.g.$, autonomous driving). Except for extending the existing attack paradigm to maliciously manipulate the segmentation models from the image-level, we propose a novel attack paradigm, the emph{fine-grained attack}, where we treat the target label ($i.e.$, annotation) from the object-level instead of the image-level to achieve more sophisticated manipulation. In the annotation of poisoned samples generated by the fine-grained attack, only pixels of specific objects will be labeled with the attacker-specified target class while others are still with their ground-truth ones. Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data. Our method not only provides a new perspective for designing novel attacks but also serves as a strong baseline for improving the robustness of semantic segmentation methods.
Speaker verification has been widely and successfully adopted in many mission-critical areas for user identification. The training of speaker verification requires a large amount of data, therefore users usually need to adopt third-party data ($e.g.$
Backdoor attack intends to inject hidden backdoor into the deep neural networks (DNNs), such that the prediction of infected models will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger. Currently, most exist
Recent research has confirmed the feasibility of backdoor attacks in deep reinforcement learning (RL) systems. However, the existing attacks require the ability to arbitrarily modify an agents observation, constraining the application scope to simple
Although deep neural networks (DNNs) have achieved a great success in various computer vision tasks, it is recently found that they are vulnerable to adversarial attacks. In this paper, we focus on the so-called textit{backdoor attack}, which injects
Deep neural networks (DNN) have shown great success in many computer vision applications. However, they are also known to be susceptible to backdoor attacks. When conducting backdoor attacks, most of the existing approaches assume that the targeted D