ترغب بنشر مسار تعليمي؟ اضغط هنا

An efficient high-current circuit for fast radio-frequency spectroscopy in cold atomic gases

286   0   0.0 ( 0 )
 نشر من قبل Francesco Scazza
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We design and implement an efficient high-current radio-frequency (RF) circuit, enabling fast and coherent coupling between magnetic levels in cold alkali atomic samples. It is based on a compact shape-optimized coil that maximizes the RF field coupling with the atomic magnetic dipole, and on coaxial transmission-line transformers that step up the field-generating current flowing in the coil to about 8 A for 100 W of RF power. The system is robust and versatile, as it generates a large RF field without compromising on the available optical access, and its central resonant frequency can be adjusted in situ. Our approach provides a cost-effective, reliable solution, featuring a low level of interference with surrounding electronic equipment thanks to its symmetric layout. We test the circuit performance using a maximum RF power of 80 W at a frequency around 82 MHz, which corresponds to a measured Rabi frequency $Omega_R/2pi simeq 18.5$ kHz, i.e. a $pi$-pulse duration of about 27 $mu$s, between two of the lowest states of ${}^6$Li at an offset magnetic field of 770 G. Our solution can be readily adapted to other atomic species and vacuum chamber designs, in view of increasing modularity of ultracold atom experiments.

قيم البحث

اقرأ أيضاً

The rapidly developing field of optomechanics aims at the combined control of optical and mechanical (solid-state or atomic) modes. In particular, laser cooled atoms have been used to exploit optomechanical coupling for self-organization in a variety of schemes where the accessible length scales are constrained by a combination of pump modes and those associated to a second imposed axis, typically a cavity axis. Here, we consider a system with many spatial degrees of freedom around a single distinguished axis, in which two symmetries - rotations and translations in the plane orthogonal to the pump axis - are spontaneously broken. We observe the simultaneous spatial structuring of the density of a cold atomic cloud and an optical pump beam. The resulting patterns have hexagonal symmetry. The experiment demonstrates the manipulation of matter by opto-mechanical self-assembly with adjustable length scales and can be potentially extended to quantum degenerate gases.
We report the efficient and fast ($sim 2mathrm{Hz}$) preparation of randomly loaded 1D chains of individual $^{87}$Rb atoms and of dense atomic clouds trapped in optical tweezers using a new experimental platform. This platform is designed for the st udy of both structured and disordered atomic systems in free space. It is composed of two high-resolution optical systems perpendicular to each other, enhancing observation and manipulation capabilities. The setup includes a dynamically controllable telescope, which we use to vary the tweezer beam waist. A D1 $Lambda$-enhanced gray molasses enhances the loading of the traps from a magneto-optical trap. Using these tools, we prepare chains of up to $sim 100$ atoms separated by $sim 1 mathrm{mu m}$ by retro-reflecting the tweezer light, hence producing a 1D optical lattice with strong transverse confinement. Dense atomic clouds with peak densities up to $n_0 = 10^{15}:mathrm{at}/mathrm{cm}^3$ are obtained by compression of an initial cloud. This high density results into interatomic distances smaller than $lambda/(2pi)$ for the D2 optical transitions, making it ideal to study light-induced interactions in dense samples.
In this study, we have studied the quantum tunneling of a single spin-orbit-coupled atom held in a periodically modulated optical lattice with an impurity. At the pseudocollapse points of quasienergy bands, where the dynamical localization takes plac e globally, two types of local second-order tunneling processes appear beyond expectation between the two nearest-neighbor sites of the impurity with the spin unchanged and with impurity site population negligible all the time, when the impurity potential is far off-resonant with the driving field. Though tunneling behaviors of the two types seem to be the same, they are believed to involve two distinct mechanisms: one is related to spin-independent process, while the other is to spin-dependent tunneling process. The two types of second-order processes can be identified by means of resonant tunneling with or without spin-flipping by tuning the impurity potential to be in resonance with the driving field. In the Floquet picture, the second-order processes are manifested as subtle and fine avoided crossings of quasienergy spectrums near the pseudocollapse region. These results are confirmed analytically on the basis of effective three-site model and multiple-time-scale asymptotic perturbative method, and may be exploited for engineering the spin-dependent quantum transport in realistic experiments.
We report on the successful extension of production of Bose-Einstein Condensate (BEC) to rare species. Despite its low natural abundance of 0.13%, $^{168}$Yb is directly evaporatively cooled down to BEC. Our successful demonstration encourages attemp ts to obtain quantum gases of radioactive atoms, which extends the possibility of quantum many-body physics and precision measurement. Moreover, a stable binary mixture of $^{168}$Yb BEC and $^{174}$Yb BEC is successfully formed.
We observe the shift of Rydberg levels of rubidium close to a copper surface when atomic clouds are repeatedly deposited on it. We measure transition frequencies of rubidium to S and D Rydberg states with principal quantum numbers n between 31 and 48 using the technique of electromagnetically induced transparency. The spectroscopic measurement shows a strong increase of electric fields towards the surface that evolves with the deposition of atoms. Starting with a clean surface, we measure the evolution of electrostatic fields in the range between 30 and 300 mum from the surface. We find that after the deposition of a few hundred atomic clouds, each containing ~10^6 atoms, the field of adsorbates reaches 1 V/cm for a distance of 30 mum from the surface. This evolution of the electrostatic field sets serious limitations on cavity QED experiments proposed for Rydberg atoms on atom chips.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا