ﻻ يوجد ملخص باللغة العربية
We report the efficient and fast ($sim 2mathrm{Hz}$) preparation of randomly loaded 1D chains of individual $^{87}$Rb atoms and of dense atomic clouds trapped in optical tweezers using a new experimental platform. This platform is designed for the study of both structured and disordered atomic systems in free space. It is composed of two high-resolution optical systems perpendicular to each other, enhancing observation and manipulation capabilities. The setup includes a dynamically controllable telescope, which we use to vary the tweezer beam waist. A D1 $Lambda$-enhanced gray molasses enhances the loading of the traps from a magneto-optical trap. Using these tools, we prepare chains of up to $sim 100$ atoms separated by $sim 1 mathrm{mu m}$ by retro-reflecting the tweezer light, hence producing a 1D optical lattice with strong transverse confinement. Dense atomic clouds with peak densities up to $n_0 = 10^{15}:mathrm{at}/mathrm{cm}^3$ are obtained by compression of an initial cloud. This high density results into interatomic distances smaller than $lambda/(2pi)$ for the D2 optical transitions, making it ideal to study light-induced interactions in dense samples.
We calculate the relative permittivity of a cold atomic gas under weak probe illumination, up to second order in the density. Within the framework of a diagrammatic representation method, we identify all the second order diagrams that enter into the
We design and implement an efficient high-current radio-frequency (RF) circuit, enabling fast and coherent coupling between magnetic levels in cold alkali atomic samples. It is based on a compact shape-optimized coil that maximizes the RF field coupl
We report investigation of near-resonance light scattering from a cold and dense atomic gas of $^{87}$Rb atoms. Measurements are made for probe frequencies tuned near the $F=2to F=3$ nearly closed hyperfine transition, with particular attention paid
Light field microscopy methods together with three dimensional (3D) deconvolution can be used to obtain single shot 3D images of atomic clouds. We demonstrate the method using a test setup which extracts three dimensional images from a fluorescent $^{87}$Rb atomic vapor.
Collective effects in atom-light interaction is of great importance for cold-atom-based quantum devices or fundamental studies on light transport in complex media. Here we discuss and compare three different approaches to light scattering by dilute c