ﻻ يوجد ملخص باللغة العربية
The rapidly developing field of optomechanics aims at the combined control of optical and mechanical (solid-state or atomic) modes. In particular, laser cooled atoms have been used to exploit optomechanical coupling for self-organization in a variety of schemes where the accessible length scales are constrained by a combination of pump modes and those associated to a second imposed axis, typically a cavity axis. Here, we consider a system with many spatial degrees of freedom around a single distinguished axis, in which two symmetries - rotations and translations in the plane orthogonal to the pump axis - are spontaneously broken. We observe the simultaneous spatial structuring of the density of a cold atomic cloud and an optical pump beam. The resulting patterns have hexagonal symmetry. The experiment demonstrates the manipulation of matter by opto-mechanical self-assembly with adjustable length scales and can be potentially extended to quantum degenerate gases.
We design and implement an efficient high-current radio-frequency (RF) circuit, enabling fast and coherent coupling between magnetic levels in cold alkali atomic samples. It is based on a compact shape-optimized coil that maximizes the RF field coupl
We report on the successful extension of production of Bose-Einstein Condensate (BEC) to rare species. Despite its low natural abundance of 0.13%, $^{168}$Yb is directly evaporatively cooled down to BEC. Our successful demonstration encourages attemp
We observe the shift of Rydberg levels of rubidium close to a copper surface when atomic clouds are repeatedly deposited on it. We measure transition frequencies of rubidium to S and D Rydberg states with principal quantum numbers n between 31 and 48
Self-organized phases in cold atoms as a result of light-mediated interactions can be induced by coupling to internal or external degrees of the atoms. There has been growing interest in the interaction of internal spin degrees of freedom with the op
A quasi-resonant laser induces a long-range attractive force within a cloud of cold atoms. We take advantage of this force to build in the laboratory a system of particles with a one-dimensional gravitational-like interaction, at a fluid level of mod