ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of spin-orbit-coupled cold atomic gases in a Floquet lattice with an impurity

155   0   0.0 ( 0 )
 نشر من قبل Xiaobing Luo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this study, we have studied the quantum tunneling of a single spin-orbit-coupled atom held in a periodically modulated optical lattice with an impurity. At the pseudocollapse points of quasienergy bands, where the dynamical localization takes place globally, two types of local second-order tunneling processes appear beyond expectation between the two nearest-neighbor sites of the impurity with the spin unchanged and with impurity site population negligible all the time, when the impurity potential is far off-resonant with the driving field. Though tunneling behaviors of the two types seem to be the same, they are believed to involve two distinct mechanisms: one is related to spin-independent process, while the other is to spin-dependent tunneling process. The two types of second-order processes can be identified by means of resonant tunneling with or without spin-flipping by tuning the impurity potential to be in resonance with the driving field. In the Floquet picture, the second-order processes are manifested as subtle and fine avoided crossings of quasienergy spectrums near the pseudocollapse region. These results are confirmed analytically on the basis of effective three-site model and multiple-time-scale asymptotic perturbative method, and may be exploited for engineering the spin-dependent quantum transport in realistic experiments.



قيم البحث

اقرأ أيضاً

One of the most important tasks in modern quantum science is to coherently control and entangle many-body systems, and to subsequently use these systems to realize powerful quantum technologies such as quantum-enhanced sensors. However, many-body ent angled states are difficult to prepare and preserve since internal dynamics and external noise rapidly degrade any useful entanglement. Here, we introduce a protocol that counterintuitively exploits inhomogeneities, a typical source of dephasing in a many-body system, in combination with interactions to generate metrologically useful and robust many-body entangled states. Motivated by current limitations in state-of-the-art three-dimensional (3D) optical lattice clocks (OLCs) operating at quantum degeneracy, we use local interactions in a Hubbard model with spin-orbit coupling to achieve a spin-locking effect. In addition to prolonging inter-particle spin coherence, spin-locking transforms the dephasing effect of spin-orbit coupling into a collective spin-squeezing process that can be further enhanced by applying a modulated drive. Our protocol is fully compatible with state-of-the-art 3D OLC interrogation schemes and may be used to improve their sensitivity, which is currently limited by the intrinsic quantum noise of independent atoms. We demonstrate that even with realistic experimental imperfections, our protocol may generate $sim10$--$14$ dB of spin squeezing in $sim1$ second with $sim10^2$--$10^4$ atoms. This capability allows OLCs to enter a new era of quantum enhanced sensing using correlated quantum states of driven non-equilibrium systems.
The rapidly developing field of optomechanics aims at the combined control of optical and mechanical (solid-state or atomic) modes. In particular, laser cooled atoms have been used to exploit optomechanical coupling for self-organization in a variety of schemes where the accessible length scales are constrained by a combination of pump modes and those associated to a second imposed axis, typically a cavity axis. Here, we consider a system with many spatial degrees of freedom around a single distinguished axis, in which two symmetries - rotations and translations in the plane orthogonal to the pump axis - are spontaneously broken. We observe the simultaneous spatial structuring of the density of a cold atomic cloud and an optical pump beam. The resulting patterns have hexagonal symmetry. The experiment demonstrates the manipulation of matter by opto-mechanical self-assembly with adjustable length scales and can be potentially extended to quantum degenerate gases.
285 - F. Scazza , G. Del Pace , L. Pieri 2021
We design and implement an efficient high-current radio-frequency (RF) circuit, enabling fast and coherent coupling between magnetic levels in cold alkali atomic samples. It is based on a compact shape-optimized coil that maximizes the RF field coupl ing with the atomic magnetic dipole, and on coaxial transmission-line transformers that step up the field-generating current flowing in the coil to about 8 A for 100 W of RF power. The system is robust and versatile, as it generates a large RF field without compromising on the available optical access, and its central resonant frequency can be adjusted in situ. Our approach provides a cost-effective, reliable solution, featuring a low level of interference with surrounding electronic equipment thanks to its symmetric layout. We test the circuit performance using a maximum RF power of 80 W at a frequency around 82 MHz, which corresponds to a measured Rabi frequency $Omega_R/2pi simeq 18.5$ kHz, i.e. a $pi$-pulse duration of about 27 $mu$s, between two of the lowest states of ${}^6$Li at an offset magnetic field of 770 G. Our solution can be readily adapted to other atomic species and vacuum chamber designs, in view of increasing modularity of ultracold atom experiments.
Measurement-based quantum computation, an alternative paradigm for quantum information processing, uses simple measurements on qubits prepared in cluster states, a class of multiparty entangled states with useful properties. Here we propose and analy ze a scheme that takes advantage of the interplay between spin-orbit coupling and superexchange interactions, in the presence of a coherent drive, to deterministically generate macroscopic arrays of cluster states in fermionic alkaline earth atoms trapped in three dimensional (3D) optical lattices. The scheme dynamically generates cluster states without the need of engineered transport, and is robust in the presence of holes, a typical imperfection in cold atom Mott insulators. The protocol is of particular relevance for the new generation of 3D optical lattice clocks with coherence times $>10$ s, two orders of magnitude larger than the cluster state generation time. We propose the use of collective measurements and time-reversal of the Hamiltonian to benchmark the underlying Ising model dynamics and the generated many-body correlations.
We study systems of fully polarized ultracold atomic gases obeying Fermi statistics. The atomic transition interacts dispersively with a mode of a standing-wave cavity, which is coherently pumped by a laser. In this setup, the intensity of the intrac avity field is determined by the refractive index of the atomic medium, and thus by the atomic density distribution. Vice versa, the density distribution of the atom is determined by the cavity field potential, whose depth is proportional to the intracavity field amplitude. In this work we show that this nonlinearity leads to an instability in the intracavity intensity that differs substantially from dispersive optical bistability, as this effect is already present in the regime, where the atomic dipole is proportional to the cavity field. Such instability is driven by the matter waves fluctuations and exhibits a peculiar dependence on the fluctuations in the atomic density distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا