ترغب بنشر مسار تعليمي؟ اضغط هنا

Represent Items by Items: An Enhanced Representation of the Target Item for Recommendation

246   0   0.0 ( 0 )
 نشر من قبل Yinjiang Cai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Item-based collaborative filtering (ICF) has been widely used in industrial applications such as recommender system and online advertising. It models users preference on target items by the items they have interacted with. Recent models use methods such as attention mechanism and deep neural network to learn the user representation and scoring function more accurately. However, despite their effectiveness, such models still overlook a problem that performance of ICF methods heavily depends on the quality of item representation especially the target item representation. In fact, due to the long-tail distribution in the recommendation, most item embeddings can not represent the semantics of items accurately and thus degrade the performance of current ICF methods. In this paper, we propose an enhanced representation of the target item which distills relevant information from the co-occurrence items. We design sampling strategies to sample fix number of co-occurrence items for the sake of noise reduction and computational cost. Considering the different importance of sampled items to the target item, we apply attention mechanism to selectively adopt the semantic information of the sampled items. Our proposed Co-occurrence based Enhanced Representation model (CER) learns the scoring function by a deep neural network with the attentive user representation and fusion of raw representation and enhanced representation of target item as input. With the enhanced representation, CER has stronger representation power for the tail items compared to the state-of-the-art ICF methods. Extensive experiments on two public benchmarks demonstrate the effectiveness of CER.



قيم البحث

اقرأ أيضاً

Recommenders personalize the web content by typically using collaborative filtering to relate users (or items) based on explicit feedback, e.g., ratings. The difficulty of collecting this feedback has recently motivated to consider implicit feedback (e.g., item consumption along with the corresponding time). In this paper, we introduce the notion of consumed item pack (CIP) which enables to link users (or items) based on their implicit analogous consumption behavior. Our proposal is generic, and we show that it captures three novel implicit recommenders: a user-based (CIP-U), an item-based (CIP-I), and a word embedding-based (DEEPCIP), as well as a state-of-the-art technique using implicit feedback (FISM). We show that our recommenders handle incremental updates incorporating freshly consumed items. We demonstrate that all three recommenders provide a recommendation quality that is competitive with state-of-the-art ones, including one incorporating both explicit and implicit feedback.
133 - Zhiwei Liu , Ziwei Fan , Yu Wang 2021
Sequential Recommendation characterizes the evolving patterns by modeling item sequences chronologically. The essential target of it is to capture the item transition correlations. The recent developments of transformer inspire the community to desig n effective sequence encoders, textit{e.g.,} SASRec and BERT4Rec. However, we observe that these transformer-based models suffer from the cold-start issue, textit{i.e.,} performing poorly for short sequences. Therefore, we propose to augment short sequences while still preserving original sequential correlations. We introduce a new framework for textbf{A}ugmenting textbf{S}equential textbf{Re}commendation with textbf{P}seudo-prior items~(ASReP). We firstly pre-train a transformer with sequences in a reverse direction to predict prior items. Then, we use this transformer to generate fabricated historical items at the beginning of short sequences. Finally, we fine-tune the transformer using these augmented sequences from the time order to predict the next item. Experiments on two real-world datasets verify the effectiveness of ASReP. The code is available on url{https://github.com/DyGRec/ASReP}.
In this paper, we propose a theoretically founded sequential strategy for training large-scale Recommender Systems (RS) over implicit feedback, mainly in the form of clicks. The proposed approach consists in minimizing pairwise ranking loss over bloc ks of consecutive items constituted by a sequence of non-clicked items followed by a clicked one for each user. We present two variants of this strategy where model parameters are updated using either the momentum method or a gradient-based approach. To prevent from updating the parameters for an abnormally high number of clicks over some targeted items (mainly due to bots), we introduce an upper and a lower threshold on the number of updates for each user. These thresholds are estimated over the distribution of the number of blocks in the training set. The thresholds affect the decision of RS and imply a shift over the distribution of items that are shown to the users. Furthermore, we provide a convergence analysis of both algorithms and demonstrate their practical efficiency over six large-scale collections, both regarding different ranking measures and computational time.
Both reviews and user-item interactions (i.e., rating scores) have been widely adopted for user rating prediction. However, these existing techniques mainly extract the latent representations for users and items in an independent and static manner. T hat is, a single static feature vector is derived to encode her preference without considering the particular characteristics of each candidate item. We argue that this static encoding scheme is difficult to fully capture the users preference. In this paper, we propose a novel context-aware user-item representation learning model for rating prediction, named CARL. Namely, CARL derives a joint representation for a given user-item pair based on their individual latent features and latent feature interactions. Then, CARL adopts Factorization Machines to further model higher-order feature interactions on the basis of the user-item pair for rating prediction. Specifically, two separate learning components are devised in CARL to exploit review data and interaction data respectively: review-based feature learning and interaction-based feature learning. In review-based learning component, with convolution operations and attention mechanism, the relevant features for a user-item pair are extracted by jointly considering their corresponding reviews. However, these features are only review-driven and may not be comprehensive. Hence, interaction-based learning component further extracts complementary features from interaction data alone, also on the basis of user-item pairs. The final rating score is then derived with a dynamic linear fusion mechanism. Experiments on five real-world datasets show that CARL achieves significantly better rating prediction accuracy than existing state-of-the-art alternatives. Also, with attention mechanism, we show that the relevant information in reviews can be highlighted to interpret the rating prediction.
Frequent Item-set Mining (FIM), sometimes called Market Basket Analysis (MBA) or Association Rule Learning (ARL), are Machine Learning (ML) methods for creating rules from datasets of transactions of items. Most methods identify items likely to appea r together in a transaction based on the support (i.e. a minimum number of relative co-occurrence of the items) for that hypothesis. Although this is a good indicator to measure the relevance of the assumption that these items are likely to appear together, the phenomenon of very frequent items, referred to as ubiquitous items, is not addressed in most algorithms. Ubiquitous items have the same entropy as infrequent items, and not contributing significantly to the knowledge. On the other hand, they have strong effect on the performance of the algorithms and sometimes preventing the convergence of the FIM algorithms and thus the provision of meaningful results. This paper discusses the phenomenon of ubiquitous items and demonstrates how ignoring these has a dramatic effect on the computation performances but with a low and controlled effect on the significance of the results.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا