ترغب بنشر مسار تعليمي؟ اضغط هنا

Sequences, Items And Latent Links: Recommendation With Consumed Item Packs

76   0   0.0 ( 0 )
 نشر من قبل Rhicheek Patra
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recommenders personalize the web content by typically using collaborative filtering to relate users (or items) based on explicit feedback, e.g., ratings. The difficulty of collecting this feedback has recently motivated to consider implicit feedback (e.g., item consumption along with the corresponding time). In this paper, we introduce the notion of consumed item pack (CIP) which enables to link users (or items) based on their implicit analogous consumption behavior. Our proposal is generic, and we show that it captures three novel implicit recommenders: a user-based (CIP-U), an item-based (CIP-I), and a word embedding-based (DEEPCIP), as well as a state-of-the-art technique using implicit feedback (FISM). We show that our recommenders handle incremental updates incorporating freshly consumed items. We demonstrate that all three recommenders provide a recommendation quality that is competitive with state-of-the-art ones, including one incorporating both explicit and implicit feedback.



قيم البحث

اقرأ أيضاً

245 - Yinjiang Cai , Zeyu Cui , Shu Wu 2021
Item-based collaborative filtering (ICF) has been widely used in industrial applications such as recommender system and online advertising. It models users preference on target items by the items they have interacted with. Recent models use methods s uch as attention mechanism and deep neural network to learn the user representation and scoring function more accurately. However, despite their effectiveness, such models still overlook a problem that performance of ICF methods heavily depends on the quality of item representation especially the target item representation. In fact, due to the long-tail distribution in the recommendation, most item embeddings can not represent the semantics of items accurately and thus degrade the performance of current ICF methods. In this paper, we propose an enhanced representation of the target item which distills relevant information from the co-occurrence items. We design sampling strategies to sample fix number of co-occurrence items for the sake of noise reduction and computational cost. Considering the different importance of sampled items to the target item, we apply attention mechanism to selectively adopt the semantic information of the sampled items. Our proposed Co-occurrence based Enhanced Representation model (CER) learns the scoring function by a deep neural network with the attentive user representation and fusion of raw representation and enhanced representation of target item as input. With the enhanced representation, CER has stronger representation power for the tail items compared to the state-of-the-art ICF methods. Extensive experiments on two public benchmarks demonstrate the effectiveness of CER.
The item cold-start problem seriously limits the recommendation performance of Collaborative Filtering (CF) methods when new items have either none or very little interactions. To solve this issue, many modern Internet applications propose to predict a new items interaction from the possessing contents. However, it is difficult to design and learn a map between the items interaction history and the corresponding contents. In this paper, we apply the Wasserstein distance to address the item cold-start problem. Given item content information, we can calculate the similarity between the interacted items and cold-start ones, so that a users preference on cold-start items can be inferred by minimizing the Wasserstein distance between the distributions over these two types of items. We further adopt the idea of CF and propose Wasserstein CF (WCF) to improve the recommendation performance on cold-start items. Experimental results demonstrate the superiority of WCF over state-of-the-art approaches.
Both reviews and user-item interactions (i.e., rating scores) have been widely adopted for user rating prediction. However, these existing techniques mainly extract the latent representations for users and items in an independent and static manner. T hat is, a single static feature vector is derived to encode her preference without considering the particular characteristics of each candidate item. We argue that this static encoding scheme is difficult to fully capture the users preference. In this paper, we propose a novel context-aware user-item representation learning model for rating prediction, named CARL. Namely, CARL derives a joint representation for a given user-item pair based on their individual latent features and latent feature interactions. Then, CARL adopts Factorization Machines to further model higher-order feature interactions on the basis of the user-item pair for rating prediction. Specifically, two separate learning components are devised in CARL to exploit review data and interaction data respectively: review-based feature learning and interaction-based feature learning. In review-based learning component, with convolution operations and attention mechanism, the relevant features for a user-item pair are extracted by jointly considering their corresponding reviews. However, these features are only review-driven and may not be comprehensive. Hence, interaction-based learning component further extracts complementary features from interaction data alone, also on the basis of user-item pairs. The final rating score is then derived with a dynamic linear fusion mechanism. Experiments on five real-world datasets show that CARL achieves significantly better rating prediction accuracy than existing state-of-the-art alternatives. Also, with attention mechanism, we show that the relevant information in reviews can be highlighted to interpret the rating prediction.
Session-based recommendation aims at predicting the next item given a sequence of previous items consumed in the session, e.g., on e-commerce or multimedia streaming services. Specifically, session data exhibits some unique characteristics, i.e., ses sion consistency and sequential dependency over items within the session, repeated item consumption, and session timeliness. In this paper, we propose simple-yet-effective linear models for considering the holistic aspects of the sessions. The comprehensive nature of our models helps improve the quality of session-based recommendation. More importantly, it provides a generalized framework for reflecting different perspectives of session data. Furthermore, since our models can be solved by closed-form solutions, they are highly scalable. Experimental results demonstrate that the proposed linear models show competitive or state-of-the-art performance in various metrics on several real-world datasets.
Next basket recommendation, which aims to predict the next a few items that a user most probably purchases given his historical transactions, plays a vital role in market basket analysis. From the viewpoint of item, an item could be purchased by diff erent users together with different items, for different reasons. Therefore, an ideal recommender system should represent an item considering its transaction contexts. Existing state-of-the-art deep learning methods usually adopt the static item representations, which are invariant among all of the transactions and thus cannot achieve the full potentials of deep learning. Inspired by the pre-trained representations of BERT in natural language processing, we propose to conduct context-aware item representation for next basket recommendation, called Item Encoder Representations from Transformers (IERT). In the offline phase, IERT pre-trains deep item representations conditioning on their transaction contexts. In the online recommendation phase, the pre-trained model is further fine-tuned with an additional output layer. The output contextualized item embeddings are used to capture users sequential behaviors and general tastes to conduct recommendation. Experimental results on the Ta-Feng data set show that IERT outperforms the state-of-the-art baseline methods, which demonstrated the effectiveness of IERT in next basket representation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا