ترغب بنشر مسار تعليمي؟ اضغط هنا

One-Round Active Learning

74   0   0.0 ( 0 )
 نشر من قبل Tianhao Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Active learning has been a main solution for reducing data labeling costs. However, existing active learning strategies assume that a data owner can interact with annotators in an online, timely manner, which is usually impractical. Even with such interactive annotators, for existing active learning strategies to be effective, they often require many rounds of interactions between the data owner and annotators, which is often time-consuming. In this work, we initiate the study of one-round active learning, which aims to select a subset of unlabeled data points that achieve the highest utility after being labeled with only the information from initially labeled data points. We propose DULO, a general framework for one-round active learning based on the notion of data utility functions, which map a set of data points to some performance measure of the model trained on the set. We formulate the one-round active learning problem as data utility function maximization. We further propose strategies to make the estimation and optimization of data utility functions scalable to large models and large unlabeled data sets. Our results demonstrate that while existing active learning approaches could succeed with multiple rounds, DULO consistently performs better in the one-round setting.

قيم البحث

اقرأ أيضاً

246 - Si Chen , Tianhao Wang , Ruoxi Jia 2021
Active learning (AL) aims at reducing labeling effort by identifying the most valuable unlabeled data points from a large pool. Traditional AL frameworks have two limitations: First, they perform data selection in a multi-round manner, which is time- consuming and impractical. Second, they usually assume that there are a small amount of labeled data points available in the same domain as the data in the unlabeled pool. Recent work proposes a solution for one-round active learning based on data utility learning and optimization, which fixes the first issue but still requires the initially labeled data points in the same domain. In this paper, we propose $mathrm{D^2ULO}$ as a solution that solves both issues. Specifically, $mathrm{D^2ULO}$ leverages the idea of domain adaptation (DA) to train a data utility model which can effectively predict the utility for any given unlabeled data in the target domain once labeled. The trained data utility model can then be used to select high-utility data and at the same time, provide an estimate for the utility of the selected data. Our algorithm does not rely on any feedback from annotators in the target domain and hence, can be used to perform zero-round active learning or warm-start existing multi-round active learning strategies. Our experiments show that $mathrm{D^2ULO}$ outperforms the existing state-of-the-art AL strategies equipped with domain adaptation over various domain shift settings (e.g., real-to-real data and synthetic-to-real data). Particularly, $mathrm{D^2ULO}$ is applicable to the scenario where source and target labels have mismatches, which is not supported by the existing works.
The General AI Challenge is an initiative to encourage the wider artificial intelligence community to focus on important problems in building intelligent machines with more general scope than is currently possible. The challenge comprises of multiple rounds, with the first round focusing on gradual learning, i.e. the ability to re-use already learned knowledge for efficiently learning to solve subsequent problems. In this article, we will present details of the first round of the challenge, its inspiration and aims. We also outline a more formal description of the challenge and present a preliminary analysis of its curriculum, based on ideas from computational mechanics. We believe, that such formalism will allow for a more principled approach towards investigating tasks in the challenge, building new curricula and for potentially improving consequent challenge rounds.
Secure aggregation is a critical component in federated learning, which enables the server to learn the aggregate model of the users without observing their local models. Conventionally, secure aggregation algorithms focus only on ensuring the privac y of individual users in a single training round. We contend that such designs can lead to significant privacy leakages over multiple training rounds, due to partial user selection/participation at each round of federated learning. In fact, we empirically show that the conventional random user selection strategies for federated learning lead to leaking users individual models within number of rounds linear in the number of users. To address this challenge, we introduce a secure aggregation framework with multi-round privacy guarantees. In particular, we introduce a new metric to quantify the privacy guarantees of federated learning over multiple training rounds, and develop a structured user selection strategy that guarantees the long-term privacy of each user (over any number of training rounds). Our framework also carefully accounts for the fairness and the average number of participating users at each round. We perform several experiments on MNIST and CIFAR-10 datasets in the IID and the non-IID settings to demonstrate the performance improvement over the baseline algorithms, both in terms of privacy protection and test accuracy.
We propose a new batch mode active learning algorithm designed for neural networks and large query batch sizes. The method, Discriminative Active Learning (DAL), poses active learning as a binary classification task, attempting to choose examples to label in such a way as to make the labeled set and the unlabeled pool indistinguishable. Experimenting on image classification tasks, we empirically show our method to be on par with state of the art methods in medium and large query batch sizes, while being simple to implement and also extend to other domains besides classification tasks. Our experiments also show that none of the state of the art methods of today are clearly better than uncertainty sampling when the batch size is relatively large, negating some of the reported results in the recent literature.
In this work we consider active local learning: given a query point $x$, and active access to an unlabeled training set $S$, output the prediction $h(x)$ of a near-optimal $h in H$ using significantly fewer labels than would be needed to actually lea rn $h$ fully. In particular, the number of label queries should be independent of the complexity of $H$, and the function $h$ should be well-defined, independent of $x$. This immediately also implies an algorithm for distance estimation: estimating the value $opt(H)$ from many fewer labels than needed to actually learn a near-optimal $h in H$, by running local learning on a few random query points and computing the average error. For the hypothesis class consisting of functions supported on the interval $[0,1]$ with Lipschitz constant bounded by $L$, we present an algorithm that makes $O(({1 / epsilon^6}) log(1/epsilon))$ label queries from an unlabeled pool of $O(({L / epsilon^4})log(1/epsilon))$ samples. It estimates the distance to the best hypothesis in the class to an additive error of $epsilon$ for an arbitrary underlying distribution. We further generalize our algorithm to more than one dimensions. We emphasize that the number of labels used is independent of the complexity of the hypothesis class which depends on $L$. Furthermore, we give an algorithm to locally estimate the values of a near-optimal function at a few query points of interest with number of labels independent of $L$. We also consider the related problem of approximating the minimum error that can be achieved by the Nadaraya-Watson estimator under a linear diagonal transformation with eigenvalues coming from a small range. For a $d$-dimensional pointset of size $N$, our algorithm achieves an additive approximation of $epsilon$, makes $tilde{O}({d}/{epsilon^2})$ queries and runs in $tilde{O}({d^2}/{epsilon^{d+4}}+{dN}/{epsilon^2})$ time.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا