ﻻ يوجد ملخص باللغة العربية
We study the properties of gravity and bulk fields living in a torsion warped braneworld. The torsion is driven by a background vector whose norm provides a source for the bulk cosmological constant. For a vector as the derivative of a scalar field, we find new isotropic and anisotropic thick brane geometries. We analyse the features of bosonic and fermionic fields in this isotropic and in standing wave scenarios. The background vector provides nonminimal coupling between the field and the geometry leading to modifications in the Kaluza-Klein states. The spinor connection is modified by the torsion and a derivative Yukawa-like coupling is proposed. The effects of these new couplings are investigated.
Braneworld models are interesting theoretical and phenomenological frameworks to search for new physics beyond the standard model of particles and cosmology. In this work, we discuss braneworld models whose gravitational dynamics are governed by tele
We extend the treatment of quantum cosmology to a manifold with torsion. We adopt a model of Einstein-Cartan-Sciama-Kibble compatible with the cosmological principle. The universe wavefunction will be subject to a $mathcal{PT}$-symmetric Hamiltonian.
We discuss some new developments in three-dimensional gravity with torsion, based on Riemann-Cartan geometry. Using the canonical approach, we study the structure of asymptotic symmetry, clarify its fundamental role in defining the gravitational cons
Torsion and nonmetricity are inherent ingredients in modifications of Einteins gravity that are based on affine spacetime geometries. In the context of pure f(R) gravity we discuss here, in some detail, the relatively unnoticed duality between torsio
The role of torsion in quantum three-dimensional gravity is investigated by studying the partition function of the Euclidean theory in Riemann-Cartan spacetime. The entropy of the black hole with torsion is found to differ from the standard Bekenstei