ترغب بنشر مسار تعليمي؟ اضغط هنا

IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID

201   0   0.0 ( 0 )
 نشر من قبل Yongxing Dai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Unsupervised domain adaptive person re-identification (UDA re-ID) aims at transferring the labeled source domains knowledge to improve the models discriminability on the unlabeled target domain. From a novel perspective, we argue that the bridging between the source and target domains can be utilized to tackle the UDA re-ID task, and we focus on explicitly modeling appropriate intermediate domains to characterize this bridging. Specifically, we propose an Intermediate Domain Module (IDM) to generate intermediate domains representations on-the-fly by mixing the source and target domains hidden representations using two domain factors. Based on the shortest geodesic path definition, i.e., the intermediate domains along the shortest geodesic path between the two extreme domains can play a better bridging role, we propose two properties that these intermediate domains should satisfy. To ensure these two properties to better characterize appropriate intermediate domains, we enforce the bridge losses on intermediate domains prediction space and feature space, and enforce a diversity loss on the two domain factors. The bridge losses aim at guiding the distribution of appropriate intermediate domains to keep the right distance to the source and target domains. The diversity loss serves as a regularization to prevent the generated intermediate domains from being over-fitting to either of the source and target domains. Our proposed method outperforms the state-of-the-arts by a large margin in all the common UDA re-ID tasks, and the mAP gain is up to 7.7% on the challenging MSMT17 benchmark. Code is available at https://github.com/SikaStar/IDM.



قيم البحث

اقرأ أيضاً

In a conventional domain adaptation person Re-identification (Re-ID) task, both the training and test images in target domain are collected under the sunny weather. However, in reality, the pedestrians to be retrieved may be obtained under severe wea ther conditions such as hazy, dusty and snowing, etc. This paper proposes a novel Interference Suppression Model (ISM) to deal with the interference caused by the hazy weather in domain adaptation person Re-ID. A teacherstudent model is used in the ISM to distill the interference information at the feature level by reducing the discrepancy between the clear and the hazy intrinsic similarity matrix. Furthermore, in the distribution level, the extra discriminator is introduced to assist the student model make the interference feature distribution more clear. The experimental results show that the proposed method achieves the superior performance on two synthetic datasets than the stateof-the-art methods. The related code will be released online https://github.com/pangjian123/ISM-ReID.
Although existing person re-identification (Re-ID) methods have shown impressive accuracy, most of them usually suffer from poor generalization on unseen target domain. Thus, generalizable person Re-ID has recently drawn increasing attention, which t rains a model on source domains that generalizes well on unseen target domain without model updating. In this work, we propose a novel adaptive domain-specific normalization approach (AdsNorm) for generalizable person Re-ID. It describes unseen target domain as a combination of the known source ones, and explicitly learns domain-specific representation with target distribution to improve the models generalization by a meta-learning pipeline. Specifically, AdsNorm utilizes batch normalization layers to collect individual source domains characteristics, and maps source domains into a shared latent space by using these characteristics, where the domain relevance is measured by a distance function of different domain-specific normalization statistics and features. At the testing stage, AdsNorm projects images from unseen target domain into the same latent space, and adaptively integrates the domain-specific features carrying the source distributions by domain relevance for learning more generalizable aggregated representation on unseen target domain. Considering that target domain is unavailable during training, a meta-learning algorithm combined with a customized relation loss is proposed to optimize an effective and efficient ensemble model. Extensive experiments demonstrate that AdsNorm outperforms the state-of-the-art methods. The code is available at: https://github.com/hzphzp/AdsNorm.
Domain adaptive person Re-Identification (ReID) is challenging owing to the domain gap and shortage of annotations on target scenarios. To handle those two challenges, this paper proposes a coupling optimization method including the Domain-Invariant Mapping (DIM) method and the Global-Local distance Optimization (GLO), respectively. Different from previous methods that transfer knowledge in two stages, the DIM achieves a more efficient one-stage knowledge transfer by mapping images in labeled and unlabeled datasets to a shared feature space. GLO is designed to train the ReID model with unsupervised setting on the target domain. Instead of relying on existing optimization strategies designed for supervised training, GLO involves more images in distance optimization, and achieves better robustness to noisy label prediction. GLO also integrates distance optimizations in both the global dataset and local training batch, thus exhibits better training efficiency. Extensive experiments on three large-scale datasets, i.e., Market-1501, DukeMTMC-reID, and MSMT17, show that our coupling optimization outperforms state-of-the-art methods by a large margin. Our method also works well in unsupervised training, and even outperforms several recent domain adaptive methods.
Unsupervised Domain Adaptive (UDA) person re-identification (ReID) aims at adapting the model trained on a labeled source-domain dataset to a target-domain dataset without any further annotations. Most successful UDA-ReID approaches combine clusterin g-based pseudo-label prediction with representation learning and perform the two steps in an alternating fashion. However, offline interaction between these two steps may allow noisy pseudo labels to substantially hinder the capability of the model. In this paper, we propose a Group-aware Label Transfer (GLT) algorithm, which enables the online interaction and mutual promotion of pseudo-label prediction and representation learning. Specifically, a label transfer algorithm simultaneously uses pseudo labels to train the data while refining the pseudo labels as an online clustering algorithm. It treats the online label refinery problem as an optimal transport problem, which explores the minimum cost for assigning M samples to N pseudo labels. More importantly, we introduce a group-aware strategy to assign implicit attribute group IDs to samples. The combination of the online label refining algorithm and the group-aware strategy can better correct the noisy pseudo label in an online fashion and narrow down the search space of the target identity. The effectiveness of the proposed GLT is demonstrated by the experimental results (Rank-1 accuracy) for Market1501$to$DukeMTMC (82.0%) and DukeMTMC$to$Market1501 (92.2%), remarkably closing the gap between unsupervised and supervised performance on person re-identification.
Unsupervised domain adaptive (UDA) person re-identification (ReID) aims to transfer the knowledge from the labeled source domain to the unlabeled target domain for person matching. One challenge is how to generate target domain samples with reliable labels for training. To address this problem, we propose a Disentanglement-based Cross-Domain Feature Augmentation (DCDFA) strategy, where the augmented features characterize well the target and source domain data distributions while inheriting reliable identity labels. Particularly, we disentangle each sample feature into a robust domain-invariant/shared feature and a domain-specific feature, and perform cross-domain feature recomposition to enhance the diversity of samples used in the training, with the constraints of cross-domain ReID loss and domain classification loss. Each recomposed feature, obtained based on the domain-invariant feature (which enables a reliable inheritance of identity) and an enhancement from a domain specific feature (which enables the approximation of real distributions), is thus an ideal augmentation. Extensive experimental results demonstrate the effectiveness of our method, which achieves the state-of-the-art performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا