ﻻ يوجد ملخص باللغة العربية
Cross-domain person re-identification (re-ID) is challenging due to the bias between training and testing domains. We observe that if backgrounds in the training and testing datasets are very different, it dramatically introduces difficulties to extract robust pedestrian features, and thus compromises the cross-domain person re-ID performance. In this paper, we formulate such problems as a background shift problem. A Suppression of Background Shift Generative Adversarial Network (SBSGAN) is proposed to generate images with suppressed backgrounds. Unlike simply removing backgrounds using binary masks, SBSGAN allows the generator to decide whether pixels should be preserved or suppressed to reduce segmentation errors caused by noisy foreground masks. Additionally, we take ID-related cues, such as vehicles and companions into consideration. With high-quality generated images, a Densely Associated 2-Stream (DA-2S) network is introduced with Inter Stream Densely Connection (ISDC) modules to strengthen the complementarity of the generated data and ID-related cues. The experiments show that the proposed method achieves competitive performance on three re-ID datasets, ie., Market-1501, DukeMTMC-reID, and CUHK03, under the cross-domain person re-ID scenario.
Most of unsupervised person Re-Identification (Re-ID) works produce pseudo-labels by measuring the feature similarity without considering the distribution discrepancy among cameras, leading to degraded accuracy in label computation across cameras. Th
Person Re-Identification (re-id) is a challenging task in computer vision, especially when there are limited training data from multiple camera views. In this paper, we pro- pose a deep learning based person re-identification method by transferring k
In a conventional domain adaptation person Re-identification (Re-ID) task, both the training and test images in target domain are collected under the sunny weather. However, in reality, the pedestrians to be retrieved may be obtained under severe wea
Existing person re-identification (re-id) methods are stuck when deployed to a new unseen scenario despite the success in cross-camera person matching. Recent efforts have been substantially devoted to domain adaptive person re-id where extensive unl
Person re-identification (ReID) has achieved significant improvement under the single-domain setting. However, directly exploiting a model to new domains is always faced with huge performance drop, and adapting the model to new domains without target