ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Corruption-Agnostic Robust Domain Adaptation

113   0   0.0 ( 0 )
 نشر من قبل Kekai Sheng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Big progress has been achieved in domain adaptation in decades. Existing works are always based on an ideal assumption that testing target domain are i.i.d. with training target domains. However, due to unpredictable corruptions (e.g., noise and blur) in real data like web images, domain adaptation methods are increasingly required to be corruption robust on target domains. In this paper, we investigate a new task, Corruption-agnostic Robust Domain Adaptation (CRDA): to be accurate on original data and robust against unavailable-for-training corruptions on target domains. This task is non-trivial due to large domain discrepancy and unsupervised target domains. We observe that simple combinations of popular methods of domain adaptation and corruption robustness have sub-optimal CRDA results. We propose a new approach based on two technical insights into CRDA: 1) an easy-to-plug module called Domain Discrepancy Generator (DDG) that generates samples that enlarge domain discrepancy to mimic unpredictable corruptions; 2) a simple but effective teacher-student scheme with contrastive loss to enhance the constraints on target domains. Experiments verify that DDG keeps or even improves performance on original data and achieves better corruption robustness that baselines.



قيم البحث

اقرأ أيضاً

Reinforcement learning competitions have formed the basis for standard research benchmarks, galvanized advances in the state-of-the-art, and shaped the direction of the field. Despite this, a majority of challenges suffer from the same fundamental pr oblems: participant solutions to the posed challenge are usually domain-specific, biased to maximally exploit compute resources, and not guaranteed to be reproducible. In this paper, we present a new framework of competition design that promotes the development of algorithms that overcome these barriers. We propose four central mechanisms for achieving this end: submission retraining, domain randomization, desemantization through domain obfuscation, and the limitation of competition compute and environment-sample budget. To demonstrate the efficacy of this design, we proposed, organized, and ran the MineRL 2020 Competition on Sample-Efficient Reinforcement Learning. In this work, we describe the organizational outcomes of the competition and show that the resulting participant submissions are reproducible, non-specific to the competition environment, and sample/resource efficient, despite the difficult competition task.
We propose a normalization layer for unsupervised domain adaption in semantic scene segmentation. Normalization layers are known to improve convergence and generalization and are part of many state-of-the-art fully-convolutional neural networks. We s how that conventional normalization layers worsen the performance of current Unsupervised Adversarial Domain Adaption (UADA), which is a method to improve network performance on unlabeled datasets and the focus of our research. Therefore, we propose a novel Domain Agnostic Normalization layer and thereby unlock the benefits of normalization layers for unsupervised adversarial domain adaptation. In our evaluation, we adapt from the synthetic GTA5 data set to the real Cityscapes data set, a common benchmark experiment, and surpass the state-of-the-art. As our normalization layer is domain agnostic at test time, we furthermore demonstrate that UADA using Domain Agnostic Normalization improves performance on unseen domains, specifically on Apolloscape and Mapillary.
98 - Kekai Sheng , Ke Li , Xiawu Zheng 2021
Towards better unsupervised domain adaptation (UDA). Recently, researchers propose various domain-conditioned attention modules and make promising progresses. However, considering that the configuration of attention, i.e., the type and the position o f attention module, affects the performance significantly, it is more generalized to optimize the attention configuration automatically to be specialized for arbitrary UDA scenario. For the first time, this paper proposes EvoADA: a novel framework to evolve the attention configuration for a given UDA task without human intervention. In particular, we propose a novel search space containing diverse attention configurations. Then, to evaluate the attention configurations and make search procedure UDA-oriented (transferability + discrimination), we apply a simple and effective evaluation strategy: 1) training the network weights on two domains with off-the-shelf domain adaptation methods; 2) evolving the attention configurations under the guide of the discriminative ability on the target domain. Experiments on various kinds of cross-domain benchmarks, i.e., Office-31, Office-Home, CUB-Paintings, and Duke-Market-1510, reveal that the proposed EvoADA consistently boosts multiple state-of-the-art domain adaptation approaches, and the optimal attention configurations help them achieve better performance.
In visual domain adaptation (DA), separating the domain-specific characteristics from the domain-invariant representations is an ill-posed problem. Existing methods apply different kinds of priors or directly minimize the domain discrepancy to addres s this problem, which lack flexibility in handling real-world situations. Another research pipeline expresses the domain-specific information as a gradual transferring process, which tends to be suboptimal in accurately removing the domain-specific properties. In this paper, we address the modeling of domain-invariant and domain-specific information from the heuristic search perspective. We identify the characteristics in the existing representations that lead to larger domain discrepancy as the heuristic representations. With the guidance of heuristic representations, we formulate a principled framework of Heuristic Domain Adaptation (HDA) with well-founded theoretical guarantees. To perform HDA, the cosine similarity scores and independence measurements between domain-invariant and domain-specific representations are cast into the constraints at the initial and final states during the learning procedure. Similar to the final condition of heuristic search, we further derive a constraint enforcing the final range of heuristic network output to be small. Accordingly, we propose Heuristic Domain Adaptation Network (HDAN), which explicitly learns the domain-invariant and domain-specific representations with the above mentioned constraints. Extensive experiments show that HDAN has exceeded state-of-the-art on unsupervised DA, multi-source DA and semi-supervised DA. The code is available at https://github.com/cuishuhao/HDA.
Recently, contrastive self-supervised learning has become a key component for learning visual representations across many computer vision tasks and benchmarks. However, contrastive learning in the context of domain adaptation remains largely underexp lored. In this paper, we propose to extend contrastive learning to a new domain adaptation setting, a particular situation occurring where the similarity is learned and deployed on samples following different probability distributions without access to labels. Contrastive learning learns by comparing and contrasting positive and negative pairs of samples in an unsupervised setting without access to source and target labels. We have developed a variation of a recently proposed contrastive learning framework that helps tackle the domain adaptation problem, further identifying and removing possible negatives similar to the anchor to mitigate the effects of false negatives. Extensive experiments demonstrate that the proposed method adapts well, and improves the performance on the downstream domain adaptation task.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا