ﻻ يوجد ملخص باللغة العربية
In visual domain adaptation (DA), separating the domain-specific characteristics from the domain-invariant representations is an ill-posed problem. Existing methods apply different kinds of priors or directly minimize the domain discrepancy to address this problem, which lack flexibility in handling real-world situations. Another research pipeline expresses the domain-specific information as a gradual transferring process, which tends to be suboptimal in accurately removing the domain-specific properties. In this paper, we address the modeling of domain-invariant and domain-specific information from the heuristic search perspective. We identify the characteristics in the existing representations that lead to larger domain discrepancy as the heuristic representations. With the guidance of heuristic representations, we formulate a principled framework of Heuristic Domain Adaptation (HDA) with well-founded theoretical guarantees. To perform HDA, the cosine similarity scores and independence measurements between domain-invariant and domain-specific representations are cast into the constraints at the initial and final states during the learning procedure. Similar to the final condition of heuristic search, we further derive a constraint enforcing the final range of heuristic network output to be small. Accordingly, we propose Heuristic Domain Adaptation Network (HDAN), which explicitly learns the domain-invariant and domain-specific representations with the above mentioned constraints. Extensive experiments show that HDAN has exceeded state-of-the-art on unsupervised DA, multi-source DA and semi-supervised DA. The code is available at https://github.com/cuishuhao/HDA.
Recently, contrastive self-supervised learning has become a key component for learning visual representations across many computer vision tasks and benchmarks. However, contrastive learning in the context of domain adaptation remains largely underexp
Recent works on domain adaptation reveal the effectiveness of adversarial learning on filling the discrepancy between source and target domains. However, two common limitations exist in current adversarial-learning-based methods. First, samples from
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a well-labeled source domain to a different but related unlabeled target domain with identical label space. Currently, the main workhorse for solving UDA is domain alignment, which
We propose an active learning approach for transferring representations across domains. Our approach, active adversarial domain adaptation (AADA), explores a duality between two related problems: adversarial domain alignment and importance sampling f
Federated learning improves data privacy and efficiency in machine learning performed over networks of distributed devices, such as mobile phones, IoT and wearable devices, etc. Yet models trained with federated learning can still fail to generalize