ﻻ يوجد ملخص باللغة العربية
We propose a normalization layer for unsupervised domain adaption in semantic scene segmentation. Normalization layers are known to improve convergence and generalization and are part of many state-of-the-art fully-convolutional neural networks. We show that conventional normalization layers worsen the performance of current Unsupervised Adversarial Domain Adaption (UADA), which is a method to improve network performance on unlabeled datasets and the focus of our research. Therefore, we propose a novel Domain Agnostic Normalization layer and thereby unlock the benefits of normalization layers for unsupervised adversarial domain adaptation. In our evaluation, we adapt from the synthetic GTA5 data set to the real Cityscapes data set, a common benchmark experiment, and surpass the state-of-the-art. As our normalization layer is domain agnostic at test time, we furthermore demonstrate that UADA using Domain Agnostic Normalization improves performance on unseen domains, specifically on Apolloscape and Mapillary.
Adapting a model to perform well on unforeseen data outside its training set is a common problem that continues to motivate new approaches. We demonstrate that application of batch normalization in the output layer, prior to softmax activation, resul
Extensive Unsupervised Domain Adaptation (UDA) studies have shown great success in practice by learning transferable representations across a labeled source domain and an unlabeled target domain with deep models. However, previous works focus on impr
We aim at the problem named One-Shot Unsupervised Domain Adaptation. Unlike traditional Unsupervised Domain Adaptation, it assumes that only one unlabeled target sample can be available when learning to adapt. This setting is realistic but more chall
Conventional unsupervised domain adaptation (UDA) studies the knowledge transfer between a limited number of domains. This neglects the more practical scenario where data are distributed in numerous different domains in the real world. The domain sim
Domain adaptation is widely used in learning problems lacking labels. Recent studies show that deep adversarial domain adaptation models can make markable improvements in performance, which include symmetric and asymmetric architectures. However, the