ترغب بنشر مسار تعليمي؟ اضغط هنا

Variational Relational Point Completion Network

356   0   0.0 ( 0 )
 نشر من قبل Liang Pan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Real-scanned point clouds are often incomplete due to viewpoint, occlusion, and noise. Existing point cloud completion methods tend to generate global shape skeletons and hence lack fine local details. Furthermore, they mostly learn a deterministic partial-to-complete mapping, but overlook structural relations in man-made objects. To tackle these challenges, this paper proposes a variational framework, Variational Relational point Completion network (VRCNet) with two appealing properties: 1) Probabilistic Modeling. In particular, we propose a dual-path architecture to enable principled probabilistic modeling across partial and complete clouds. One path consumes complete point clouds for reconstruction by learning a point VAE. The other path generates complete shapes for partial point clouds, whose embedded distribution is guided by distribution obtained from the reconstruction path during training. 2) Relational Enhancement. Specifically, we carefully design point self-attention kernel and point selective kernel module to exploit relational point features, which refines local shape details conditioned on the coarse completion. In addition, we contribute a multi-view partial point cloud dataset (MVP dataset) containing over 100,000 high-quality scans, which renders partial 3D shapes from 26 uniformly distributed camera poses for each 3D CAD model. Extensive experiments demonstrate that VRCNet outperforms state-of-theart methods on all standard point cloud completion benchmarks. Notably, VRCNet shows great generalizability and robustness on real-world point cloud scans.


قيم البحث

اقرأ أيضاً

We describe a simple pre-training approach for point clouds. It works in three steps: 1. Mask all points occluded in a camera view; 2. Learn an encoder-decoder model to reconstruct the occluded points; 3. Use the encoder weights as initialisation for downstream point cloud tasks. We find that even when we construct a single pre-training dataset (from ModelNet40), this pre-training method improves accuracy across different datasets and encoders, on a wide range of downstream tasks. Specifically, we show that our method outperforms previous pre-training methods in object classification, and both part-based and semantic segmentation tasks. We study the pre-trained features and find that they lead to wide downstream minima, have high transformation invariance, and have activations that are highly correlated with part labels. Code and data are available at: https://github.com/hansen7/OcCo
3D point cloud completion, the task of inferring the complete geometric shape from a partial point cloud, has been attracting attention in the community. For acquiring high-fidelity dense point clouds and avoiding uneven distribution, blurred details , or structural loss of existing methods results, we propose a novel approach to complete the partial point cloud in two stages. Specifically, in the first stage, the approach predicts a complete but coarse-grained point cloud with a collection of parametric surface elements. Then, in the second stage, it merges the coarse-grained prediction with the input point cloud by a novel sampling algorithm. Our method utilizes a joint loss function to guide the distribution of the points. Extensive experiments verify the effectiveness of our method and demonstrate that it outperforms the existing methods in both the Earth Movers Distance (EMD) and the Chamfer Distance (CD).
Scanning real-life scenes with modern registration devices typically give incomplete point cloud representations, mostly due to the limitations of the scanning process and 3D occlusions. Therefore, completing such partial representations remains a fu ndamental challenge of many computer vision applications. Most of the existing approaches aim to solve this problem by learning to reconstruct individual 3D objects in a synthetic setup of an uncluttered environment, which is far from a real-life scenario. In this work, we reformulate the problem of point cloud completion into an object hallucination task. Thus, we introduce a novel autoencoder-based architecture called HyperPocket that disentangles latent representations and, as a result, enables the generation of multiple variants of the completed 3D point clouds. We split point cloud processing into two disjoint data streams and leverage a hypernetwork paradigm to fill the spaces, dubbed pockets, that are left by the missing object parts. As a result, the generated point clouds are not only smooth but also plausible and geometrically consistent with the scene. Our method offers competitive performances to the other state-of-the-art models, and it enables a~plethora of novel applications.
Most network data are collected from partially observable networks with both missing nodes and missing edges, for example, due to limited resources and privacy settings specified by users on social media. Thus, it stands to reason that inferring the missing parts of the networks by performing network completion should precede downstream applications. However, despite this need, the recovery of missing nodes and edges in such incomplete networks is an insufficiently explored problem due to the modeling difficulty, which is much more challenging than link prediction that only infers missing edges. In this paper, we present DeepNC, a novel method for inferring the missing parts of a network based on a deep generative model of graphs. Specifically, our method first learns a likelihood over edges via an autoregressive generative model, and then identifies the graph that maximizes the learned likelihood conditioned on the observable graph topology. Moreover, we propose a computationally efficient DeepNC algorithm that consecutively finds individual nodes that maximize the probability in each node generation step, as well as an enhanced version using the expectation-maximization algorithm. The runtime complexities of both algorithms are shown to be almost linear in the number of nodes in the network. We empirically demonstrate the superiority of DeepNC over state-of-the-art network completion approaches.
132 - Donghan Yu , Yiming Yang 2021
Different from traditional knowledge graphs (KGs) where facts are represented as entity-relation-entity triplets, hyper-relational KGs (HKGs) allow triplets to be associated with additional relation-entity pairs (a.k.a qualifiers) to convey more comp lex information. How to effectively and efficiently model the triplet-qualifier relationship for prediction tasks such as HKG completion is an open challenge for research. This paper proposes to improve the best-performing method in HKG completion, namely STARE, by introducing two novel revisions: (1) Replacing the computation-heavy graph neural network module with light-weight entity/relation embedding processing techniques for efficiency improvement without sacrificing effectiveness; (2) Adding a qualifier-oriented auxiliary training task for boosting the prediction power of our approach on HKG completion. The proposed approach consistently outperforms STARE in our experiments on three benchmark datasets, with significantly improved computational efficiency.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا