ﻻ يوجد ملخص باللغة العربية
Scanning real-life scenes with modern registration devices typically give incomplete point cloud representations, mostly due to the limitations of the scanning process and 3D occlusions. Therefore, completing such partial representations remains a fundamental challenge of many computer vision applications. Most of the existing approaches aim to solve this problem by learning to reconstruct individual 3D objects in a synthetic setup of an uncluttered environment, which is far from a real-life scenario. In this work, we reformulate the problem of point cloud completion into an object hallucination task. Thus, we introduce a novel autoencoder-based architecture called HyperPocket that disentangles latent representations and, as a result, enables the generation of multiple variants of the completed 3D point clouds. We split point cloud processing into two disjoint data streams and leverage a hypernetwork paradigm to fill the spaces, dubbed pockets, that are left by the missing object parts. As a result, the generated point clouds are not only smooth but also plausible and geometrically consistent with the scene. Our method offers competitive performances to the other state-of-the-art models, and it enables a~plethora of novel applications.
We describe a simple pre-training approach for point clouds. It works in three steps: 1. Mask all points occluded in a camera view; 2. Learn an encoder-decoder model to reconstruct the occluded points; 3. Use the encoder weights as initialisation for
In this paper, we proposed a novel Style-based Point Generator with Adversarial Rendering (SpareNet) for point cloud completion. Firstly, we present the channel-attentive EdgeConv to fully exploit the local structures as well as the global shape in p
Point cloud completion aims to predict a complete shape in high accuracy from its partial observation. However, previous methods usually suffered from discrete nature of point cloud and unstructured prediction of points in local regions, which makes
3D point cloud completion, the task of inferring the complete geometric shape from a partial point cloud, has been attracting attention in the community. For acquiring high-fidelity dense point clouds and avoiding uneven distribution, blurred details
Point clouds captured in real-world applications are often incomplete due to the limited sensor resolution, single viewpoint, and occlusion. Therefore, recovering the complete point clouds from partial ones becomes an indispensable task in many pract