ترغب بنشر مسار تعليمي؟ اضغط هنا

ABEM: An Adaptive Agent-based Evolutionary Approach for Mining Influencers in Online Social Networks

238   0   0.0 ( 0 )
 نشر من قبل Shiqing Wu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A key step in influence maximization in online social networks is the identification of a small number of users, known as influencers, who are able to spread influence quickly and widely to other users. The evolving nature of the topological structure of these networks makes it difficult to locate and identify these influencers. In this paper, we propose an adaptive agent-based evolutionary approach to address this problem in the context of both static and dynamic networks. This approach is shown to be able to adapt the solution as the network evolves. It is also applicable to large-scale networks due to its distributed framework. Evaluation of our approach is performed by using both synthetic networks and real-world datasets. Experimental results demonstrate that the proposed approach outperforms state-of-the-art seeding algorithms in terms of maximizing influence.



قيم البحث

اقرأ أيضاً

117 - Zhepeng Li , Xiao Fang , Xue Bai 2015
Link recommendation, which suggests links to connect currently unlinked users, is a key functionality offered by major online social networks. Salient examples of link recommendation include People You May Know on Facebook and LinkedIn as well as You May Know on Google+. The main stakeholders of an online social network include users (e.g., Facebook users) who use the network to socialize with other users and an operator (e.g., Facebook Inc.) that establishes and operates the network for its own benefit (e.g., revenue). Existing link recommendation methods recommend links that are likely to be established by users but overlook the benefit a recommended link could bring to an operator. To address this gap, we define the utility of recommending a link and formulate a new research problem - the utility-based link recommendation problem. We then propose a novel utility-based link recommendation method that recommends links based on the value, cost, and linkage likelihood of a link, in contrast to existing link recommendation methods which focus solely on linkage likelihood. Specifically, our method models the dependency relationship between value, cost, linkage likelihood and utility-based link recommendation decision using a Bayesian network, predicts the probability of recommending a link with the Bayesian network, and recommends links with the highest probabilities. Using data obtained from a major U.S. online social network, we demonstrate significant performance improvement achieved by our method compared to prevalent link recommendation methods from representative prior research.
180 - Haozhe Wu , Zhiyuan Hu , Jia Jia 2019
Online Social Networks (OSNs) evolve through two pervasive behaviors: follow and unfollow, which respectively signify relationship creation and relationship dissolution. Researches on social network evolution mainly focus on the follow behavior, whil e the unfollow behavior has largely been ignored. Mining unfollow behavior is challenging because users decision on unfollow is not only affected by the simple combination of users attributes like informativeness and reciprocity, but also affected by the complex interaction among them. Meanwhile, prior datasets seldom contain sufficient records for inferring such complex interaction. To address these issues, we first construct a large-scale real-world Weibo dataset, which records detailed post content and relationship dynamics of 1.8 million Chinese users. Next, we define users attributes as two categories: spatial attributes (e.g., social role of user) and temporal attributes (e.g., post content of user). Leveraging the constructed dataset, we systematically study how the interaction effects between users spatial and temporal attributes contribute to the unfollow behavior. Afterwards, we propose a novel unified model with heterogeneous information (UMHI) for unfollow prediction. Specifically, our UMHI model: 1) captures users spatial attributes through social network structure; 2) infers users temporal attributes through user-posted content and unfollow history; and 3) models the interaction between spatial and temporal attributes by the nonlinear MLP layers. Comprehensive evaluations on the constructed dataset demonstrate that the proposed UMHI model outperforms baseline methods by 16.44% on average in terms of precision. In addition, factor analyses verify that both spatial attributes and temporal attributes are essential for mining unfollow behavior.
The widespread of Online Social Networks and the opportunity to commercialize popular accounts have attracted a large number of automated programs, known as artificial accounts. This paper focuses on the classification of human and fake accounts on t he social network, by employing several graph neural networks, to efficiently encode attributes and network graph features of the account. Our work uses both network structure and attributes to distinguish human and artificial accounts and compares attributed and traditional graph embeddings. Separating complex, human-like artificial accounts into a standalone task demonstrates significant limitations of profile-based algorithms for bot detection and shows the efficiency of network structure-based methods for detecting sophisticated bot accounts. Experiments show that our approach can achieve competitive performance compared with existing state-of-the-art bot detection systems with only network-driven features. The source code of this paper is available at: http://github.com/karpovilia/botdetection.
228 - Shiqing Wu , Weihua Li , Hao Shen 2021
In recent years, recommendation systems have been widely applied in many domains. These systems are impotent in affecting users to choose the behavior that the system expects. Meanwhile, providing incentives has been proven to be a more proactive way to affect users behaviors. Due to the budget limitation, the number of users who can be incentivized is restricted. In this light, we intend to utilize social influence existing among users to enhance the effect of incentivization. Through incentivizing influential users directly, their followers in the social network are possibly incentivized indirectly. However, in many real-world scenarios, the topological structure of the network is usually unknown, which makes identifying influential users difficult. To tackle the aforementioned challenges, in this paper, we propose a novel algorithm for exploring influential users in unknown networks, which can estimate the influential relationships among users based on their historical behaviors and without knowing the topology of the network. Meanwhile, we design an adaptive incentive allocation approach that determines incentive values based on users preferences and their influence ability. We evaluate the performance of the proposed approaches by conducting experiments on both synthetic and real-world datasets. The experimental results demonstrate the effectiveness of the proposed approaches.
It has been insufficiently explored how to perform density-based clustering by exploiting textual attributes on social media. In this paper, we aim at discovering a social point-of-interest (POI) boundary, formed as a convex polygon. More specificall y, we present a new approach and algorithm, built upon our earlier work on social POI boundary estimation (SoBEst). This SoBEst approach takes into account both relevant and irrelevant records within a geographic area, where relevant records contain a POI name or its variations in their text field. Our study is motivated by the following empirical observation: a fixed representative coordinate of each POI that SoBEst basically assumes may be far away from the centroid of the estimated social POI boundary for certain POIs. Thus, using SoBEst in such cases may possibly result in unsatisfactory performance on the boundary estimation quality (BEQ), which is expressed as a function of the $F$-measure. To solve this problem, we formulate a joint optimization problem of simultaneously finding the radius of a circle and the POIs representative coordinate $c$ by allowing to update $c$. Subsequently, we design an iterative SoBEst (I-SoBEst) algorithm, which enables us to achieve a higher degree of BEQ for some POIs. The computational complexity of the proposed I-SoBEst algorithm is shown to scale linearly with the number of records. We demonstrate the superiority of our algorithm over competing clustering methods including the original SoBEst.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا