ترغب بنشر مسار تعليمي؟ اضغط هنا

Mining Unfollow Behavior in Large-Scale Online Social Networks via Spatial-Temporal Interaction

181   0   0.0 ( 0 )
 نشر من قبل Haozhe Wu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Online Social Networks (OSNs) evolve through two pervasive behaviors: follow and unfollow, which respectively signify relationship creation and relationship dissolution. Researches on social network evolution mainly focus on the follow behavior, while the unfollow behavior has largely been ignored. Mining unfollow behavior is challenging because users decision on unfollow is not only affected by the simple combination of users attributes like informativeness and reciprocity, but also affected by the complex interaction among them. Meanwhile, prior datasets seldom contain sufficient records for inferring such complex interaction. To address these issues, we first construct a large-scale real-world Weibo dataset, which records detailed post content and relationship dynamics of 1.8 million Chinese users. Next, we define users attributes as two categories: spatial attributes (e.g., social role of user) and temporal attributes (e.g., post content of user). Leveraging the constructed dataset, we systematically study how the interaction effects between users spatial and temporal attributes contribute to the unfollow behavior. Afterwards, we propose a novel unified model with heterogeneous information (UMHI) for unfollow prediction. Specifically, our UMHI model: 1) captures users spatial attributes through social network structure; 2) infers users temporal attributes through user-posted content and unfollow history; and 3) models the interaction between spatial and temporal attributes by the nonlinear MLP layers. Comprehensive evaluations on the constructed dataset demonstrate that the proposed UMHI model outperforms baseline methods by 16.44% on average in terms of precision. In addition, factor analyses verify that both spatial attributes and temporal attributes are essential for mining unfollow behavior.



قيم البحث

اقرأ أيضاً

COVID-19 has caused lasting damage to almost every domain in public health, society, and economy. To monitor the pandemic trend, existing studies rely on the aggregation of traditional statistical models and epidemic spread theory. In other words, hi storical statistics of COVID-19, as well as the population mobility data, become the essential knowledge for monitoring the pandemic trend. However, these solutions can barely provide precise prediction and satisfactory explanations on the long-term disease surveillance while the ubiquitous social media resources can be the key enabler for solving this problem. For example, serious discussions may occur on social media before and after some breaking events take place. These events, such as marathon and parade, may impact the spread of the virus. To take advantage of the social media data, we propose a novel framework, Social Media enhAnced pandemic suRveillance Technique (SMART), which is composed of two modules: (i) information extraction module to construct heterogeneous knowledge graphs based on the extracted events and relationships among them; (ii) time series prediction module to provide both short-term and long-term forecasts of the confirmed cases and fatality at the state-level in the United States and to discover risk factors for COVID-19 interventions. Extensive experiments show that our method largely outperforms the state-of-the-art baselines by 7.3% and 7.4% in confirmed case/fatality prediction, respectively.
237 - Weihua Li , Yuxuan Hu , Shiqing Wu 2021
A key step in influence maximization in online social networks is the identification of a small number of users, known as influencers, who are able to spread influence quickly and widely to other users. The evolving nature of the topological structur e of these networks makes it difficult to locate and identify these influencers. In this paper, we propose an adaptive agent-based evolutionary approach to address this problem in the context of both static and dynamic networks. This approach is shown to be able to adapt the solution as the network evolves. It is also applicable to large-scale networks due to its distributed framework. Evaluation of our approach is performed by using both synthetic networks and real-world datasets. Experimental results demonstrate that the proposed approach outperforms state-of-the-art seeding algorithms in terms of maximizing influence.
This article presents a novel approach for learning low-dimensional distributed representations of users in online social networks. Existing methods rely on the network structure formed by the social relationships among users to extract these represe ntations. However, the network information can be obsolete, incomplete or dynamically changing. In addition, in some cases, it can be prohibitively expensive to get the network information. Therefore, we propose an alternative approach based on observations from topics being talked on in social networks. We utilise the time information of users adopting topics in order to embed them in a real-valued vector space. Through extensive experiments, we investigate the properties of the representations learned and their efficacy in preserving information about link structure among users. We also evaluate the representations in two different prediction tasks, namely, predicting most likely future adopters of a topic and predicting the geo-location of users. Experiments to validate the proposed methods are performed on a large-scale social network extracted from Twitter, consisting of about 7.7 million users and their activity on around 3.6 million topics over a month-long period.
One of the new scientific ways of understanding discourse dynamics is analyzing the public data of social networks. This researchs aim is Post-structuralist Discourse Analysis (PDA) of Covid-19 phenomenon (inspired by Laclau and Mouffes Discourse The ory) by using Intelligent Data Mining for Persian Society. The examined big data is five million tweets from 160,000 users of the Persian Twitter network to compare two discourses. Besides analyzing the tweet texts individually, a social network graph database has been created based on retweets relationships. We use the VoteRank algorithm to introduce and rank people whose posts become word of mouth, provided that the total information spreading scope is maximized over the network. These users are also clustered according to their word usage pattern (the Gaussian Mixture Model is used). The constructed discourse of influential spreaders is compared to the most active users. This analysis is done based on Covid-related posts over eight episodes. Also, by relying on the statistical content analysis and polarity of tweet words, discourse analysis is done for the whole mentioned subpopulations, especially for the top individuals. The most important result of this research is that the Twitter subjects discourse construction is government-based rather than community-based. The analyzed Iranian society does not consider itself responsible for the Covid-19 wicked problem, does not believe in participation, and expects the government to solve all problems. The most active and most influential users similarity is that political, national, and critical discourse construction is the predominant one. In addition to the advantages of its research methodology, it is necessary to pay attention to the studys limitations. Suggestion for future encounters of Iranian society with similar crises is given.
191 - Ajay Sridharan 2010
Degree distribution of nodes, especially a power law degree distribution, has been regarded as one of the most significant structural characteristics of social and information networks. Node degree, however, only discloses the first-order structure o f a network. Higher-order structures such as the edge embeddedness and the size of communities may play more important roles in many online social networks. In this paper, we provide empirical evidence on the existence of rich higherorder structural characteristics in online social networks, develop mathematical models to interpret and model these characteristics, and discuss their various applications in practice. In particular, 1) We show that the embeddedness distribution of social links in many social networks has interesting and rich behavior that cannot be captured by well-known network models. We also provide empirical results showing a clear correlation between the embeddedness distribution and the average number of messages communicated between pairs of social network nodes. 2) We formally prove that random k-tree, a recent model for complex networks, has a power law embeddedness distribution, and show empirically that the random k-tree model can be used to capture the rich behavior of higherorder structures we observed in real-world social networks. 3) Going beyond the embeddedness, we show that a variant of the random k-tree model can be used to capture the power law distribution of the size of communities of overlapping cliques discovered recently.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا