ترغب بنشر مسار تعليمي؟ اضغط هنا

Utility-based Link Recommendation for Online Social Networks

118   0   0.0 ( 0 )
 نشر من قبل Xiao Fang
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Link recommendation, which suggests links to connect currently unlinked users, is a key functionality offered by major online social networks. Salient examples of link recommendation include People You May Know on Facebook and LinkedIn as well as You May Know on Google+. The main stakeholders of an online social network include users (e.g., Facebook users) who use the network to socialize with other users and an operator (e.g., Facebook Inc.) that establishes and operates the network for its own benefit (e.g., revenue). Existing link recommendation methods recommend links that are likely to be established by users but overlook the benefit a recommended link could bring to an operator. To address this gap, we define the utility of recommending a link and formulate a new research problem - the utility-based link recommendation problem. We then propose a novel utility-based link recommendation method that recommends links based on the value, cost, and linkage likelihood of a link, in contrast to existing link recommendation methods which focus solely on linkage likelihood. Specifically, our method models the dependency relationship between value, cost, linkage likelihood and utility-based link recommendation decision using a Bayesian network, predicts the probability of recommending a link with the Bayesian network, and recommends links with the highest probabilities. Using data obtained from a major U.S. online social network, we demonstrate significant performance improvement achieved by our method compared to prevalent link recommendation methods from representative prior research.



قيم البحث

اقرأ أيضاً

Link prediction is one of the fundamental problems in computational social science. A particularly common means to predict existence of unobserved links is via structural similarity metrics, such as the number of common neighbors; node pairs with hig her similarity are thus deemed more likely to be linked. However, a number of applications of link prediction, such as predicting links in gang or terrorist networks, are adversarial, with another party incentivized to minimize its effectiveness by manipulating observed information about the network. We offer a comprehensive algorithmic investigation of the problem of attacking similarity-based link prediction through link deletion, focusing on two broad classes of such approaches, one which uses only local information about target links, and another which uses global network information. While we show several variations of the general problem to be NP-Hard for both local and global metrics, we exhibit a number of well-motivated special cases which are tractable. Additionally, we provide principled and empirically effective algorithms for the intractable cases, in some cases proving worst-case approximation guarantees.
With the growing amount of mobile social media, offline ephemeral social networks (OffESNs) are receiving more and more attentions. Offline ephemeral social networks (OffESNs) are the networks created ad-hoc at a specific location for a specific purp ose and lasting for short period of time, relying on mobile social media such as Radio Frequency Identification (RFID) and Bluetooth devices. The primary purpose of people in the OffESNs is to acquire and share information via attending prescheduled events. Event Recommendation over this kind of networks can facilitate attendees on selecting the prescheduled events and organizers on making resource planning. However, because of lack of users preference and rating information, as well as explicit social relations, both rating based traditional recommendation methods and social-trust based recommendation methods can no longer work well to recommend events in the OffESNs. To address the challenges such as how to derive users latent preferences and social relations and how to fuse the latent information in a unified model, we first construct two heterogeneous interaction social networks, an event participation network and a physical proximity network. Then, we use them to derive users latent preferences and latent networks on social relations, including like-minded peers, co-attendees and friends. Finally, we propose an LNF (Latent Networks Fusion) model under a pairwise factor graph to infer event attendance probabilities for recommendation. Experiments on an RFID-based real conference dataset have demonstrated the effectiveness of the proposed model compared with typical solutions.
In modern social media platforms, an effective content recommendation should benefit both creators to bring genuine benefits to them and consumers to help them get really interesting content. To address the limitations of existing methods for social recommendation, we propose Social Explorative Attention Network (SEAN), a social recommendation framework that uses a personalized content recommendation model to encourage personal interests driven recommendation. SEAN has t
237 - Weihua Li , Yuxuan Hu , Shiqing Wu 2021
A key step in influence maximization in online social networks is the identification of a small number of users, known as influencers, who are able to spread influence quickly and widely to other users. The evolving nature of the topological structur e of these networks makes it difficult to locate and identify these influencers. In this paper, we propose an adaptive agent-based evolutionary approach to address this problem in the context of both static and dynamic networks. This approach is shown to be able to adapt the solution as the network evolves. It is also applicable to large-scale networks due to its distributed framework. Evaluation of our approach is performed by using both synthetic networks and real-world datasets. Experimental results demonstrate that the proposed approach outperforms state-of-the-art seeding algorithms in terms of maximizing influence.
Activity maximization is a task of seeking a small subset of users in a given social network that makes the expected total activity benefit maximized. This is a generalization of many real applications. In this paper, we extend activity maximization problem to that under the general marketing strategy $vec{x}$, which is a $d$-dimensional vector from a lattice space and has probability $h_u(vec{x})$ to activate a node $u$ as a seed. Based on that, we propose the continuous activity maximization (CAM) problem, where the domain is continuous and the seed set we select conforms to a certain probability distribution. It is a new topic to study the problem about information diffusion under the lattice constraint, thus, we address the problem systematically here. First, we analyze the hardness of CAM and how to compute the objective function of CAM accurately and effectively. We prove this objective function is monotone, but not DR-submodular and not DR-supermodular. Then, we develop a monotone and DR-submodular lower bound and upper bound of CAM, and apply sampling techniques to design three unbiased estimators for CAM, its lower bound and upper bound. Next, adapted from IMM algorithm and sandwich approximation framework, we obtain a data-dependent approximation ratio. This process can be considered as a general method to solve those maximization problem on lattice but not DR-submodular. Last, we conduct experiments on three real-world datasets to evaluate the correctness and effectiveness of our proposed algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا