ﻻ يوجد ملخص باللغة العربية
A limiting factor towards the wide routine use of wearables devices for continuous healthcare monitoring is their cumbersome and obtrusive nature. This is particularly true for electroencephalography (EEG) recordings, which require the placement of multiple electrodes in contact with the scalp. In this work, we propose to identify the optimal wearable EEG electrode set-up, in terms of minimal number of electrodes, comfortable location and performance, for EEG-based event detection and monitoring. By relying on the demonstrated power of autoencoder (AE) networks to learn latent representations from high-dimensional data, our proposed strategy trains an AE architecture in a one-class classification setup with different electrode set-ups as input data. The resulting models are assessed using the F-score and the best set-up is chosen according to the established optimal criteria. Using alpha wave detection as use case, we demonstrate that the proposed method allows to detect an alpha state from an optimal set-up consisting of electrodes in the forehead and behind the ear, with an average F-score of 0.78. Our results suggest that a learning-based approach can be used to enable the design and implementation of optimized wearable devices for real-life healthcare monitoring.
We present the implementation of seizure detection algorithms based on a minimal number of EEG channels on a parallel ultra-low-power embedded platform. The analyses are based on the CHB-MIT dataset, and include explorations of different classificati
An innovations sequence of a time series is a sequence of independent and identically distributed random variables with which the original time series has a causal representation. The innovation at a time is statistically independent of the history o
With the development and widespread use of wireless devices in recent years (mobile phones, Internet of Things, Wi-Fi), the electromagnetic spectrum has become extremely crowded. In order to counter security threats posed by rogue or unknown transmit
This study introduces a low-complexity behavioural model to describe the dynamic response of railway turnouts due to the ballast and railpad components. The behavioural model should serve as the basis for the future development of a supervisory syste
Modern wearable devices are embedded with a range of noninvasive biomarker sensors that hold promise for improving detection and treatment of disease. One such sensor is the single-lead electrocardiogram (ECG) which measures electrical signals in the