ترغب بنشر مسار تعليمي؟ اضغط هنا

Innovations Autoencoder and its Application in One-class Anomalous Sequence Detection

214   0   0.0 ( 0 )
 نشر من قبل Xinyi Wang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

An innovations sequence of a time series is a sequence of independent and identically distributed random variables with which the original time series has a causal representation. The innovation at a time is statistically independent of the history of the time series. As such, it represents the new information contained at present but not in the past. Because of its simple probability structure, an innovations sequence is the most efficient signature of the original. Unlike the principle or independent component analysis representations, an innovations sequence preserves not only the complete statistical properties but also the temporal order of the original time series. An long-standing open problem is to find a computationally tractable way to extract an innovations sequence of non-Gaussian processes. This paper presents a deep learning approach, referred to as Innovations Autoencoder (IAE), that extracts innovations sequences using a causal convolutional neural network. An application of IAE to the one-class anomalous sequence detection problem with unknown anomaly and anomaly-free models is also presented.



قيم البحث

اقرأ أيضاً

Dimensionality reduction is a crucial first step for many unsupervised learning tasks including anomaly detection and clustering. Autoencoder is a popular mechanism to accomplish dimensionality reduction. In order to make dimensionality reduction eff ective for high-dimensional data embedding nonlinear low-dimensional manifold, it is understood that some sort of geodesic distance metric should be used to discriminate the data samples. Inspired by the success of geodesic distance approximators such as ISOMAP, we propose to use a minimum spanning tree (MST), a graph-based algorithm, to approximate the local neighborhood structure and generate structure-preserving distances among data points. We use this MST-based distance metric to replace the Euclidean distance metric in the embedding function of autoencoders and develop a new graph regularized autoencoder, which outperforms a wide range of alternative methods over 20 benchmark anomaly detection datasets. We further incorporate the MST regularizer into two generative adversarial networks and find that using the MST regularizer improves the performance of anomaly detection substantially for both generative adversarial networks. We also test our MST regularized autoencoder on two datasets in a clustering application and witness its superior performance as well.
We develop a novel approach to explain why AdaBoost is a successful classifier. By introducing a measure of the influence of the noise points (ION) in the training data for the binary classification problem, we prove that there is a strong connection between the ION and the test error. We further identify that the ION of AdaBoost decreases as the iteration number or the complexity of the base learners increases. We confirm that it is impossible to obtain a consistent classifier without deep trees as the base learners of AdaBoost in some complicated situations. We apply AdaBoost in portfolio management via empirical studies in the Chinese market, which corroborates our theoretical propositions.
Computer simulations have become a popular tool of assessing complex skills such as problem-solving skills. Log files of computer-based items record the entire human-computer interactive processes for each respondent. The response processes are very diverse, noisy, and of nonstandard formats. Few generic methods have been developed for exploiting the information contained in process data. In this article, we propose a method to extract latent variables from process data. The method utilizes a sequence-to-sequence autoencoder to compress response processes into standard numerical vectors. It does not require prior knowledge of the specific items and human-computers interaction patterns. The proposed method is applied to both simulated and real process data to demonstrate that the resulting latent variables extract useful information from the response processes.
128 - Zhijian Ou , Yunfu Song 2020
Although with progress in introducing auxiliary amortized inference models, learning discrete latent variable models is still challenging. In this paper, we show that the annoying difficulty of obtaining reliable stochastic gradients for the inferenc e model and the drawback of indirectly optimizing the target log-likelihood can be gracefully addressed in a new method based on stochastic approximation (SA) theory of the Robbins-Monro type. Specifically, we propose to directly maximize the target log-likelihood and simultaneously minimize the inclusive divergence between the posterior and the inference model. The resulting learning algorithm is called joint SA (JSA). To the best of our knowledge, JSA represents the first method that couples an SA version of the EM (expectation-maximization) algorithm (SAEM) with an adaptive MCMC procedure. Experiments on several benchmark generative modeling and structured prediction tasks show that JSA consistently outperforms recent competitive algorithms, with faster convergence, better final likelihoods, and lower variance of gradient estimates.
A limiting factor towards the wide routine use of wearables devices for continuous healthcare monitoring is their cumbersome and obtrusive nature. This is particularly true for electroencephalography (EEG) recordings, which require the placement of m ultiple electrodes in contact with the scalp. In this work, we propose to identify the optimal wearable EEG electrode set-up, in terms of minimal number of electrodes, comfortable location and performance, for EEG-based event detection and monitoring. By relying on the demonstrated power of autoencoder (AE) networks to learn latent representations from high-dimensional data, our proposed strategy trains an AE architecture in a one-class classification setup with different electrode set-ups as input data. The resulting models are assessed using the F-score and the best set-up is chosen according to the established optimal criteria. Using alpha wave detection as use case, we demonstrate that the proposed method allows to detect an alpha state from an optimal set-up consisting of electrodes in the forehead and behind the ear, with an average F-score of 0.78. Our results suggest that a learning-based approach can be used to enable the design and implementation of optimized wearable devices for real-life healthcare monitoring.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا