ترغب بنشر مسار تعليمي؟ اضغط هنا

Representing and Denoising Wearable ECG Recordings

92   0   0.0 ( 0 )
 نشر من قبل Andrew Miller
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern wearable devices are embedded with a range of noninvasive biomarker sensors that hold promise for improving detection and treatment of disease. One such sensor is the single-lead electrocardiogram (ECG) which measures electrical signals in the heart. The benefits of the sheer volume of ECG measurements with rich longitudinal structure made possible by wearables come at the price of potentially noisier measurements compared to clinical ECGs, e.g., due to movement. In this work, we develop a statistical model to simulate a structured noise process in ECGs derived from a wearable sensor, design a beat-to-beat representation that is conducive for analyzing variation, and devise a factor analysis-based method to denoise the ECG. We study synthetic data generated using a realistic ECG simulator and a structured noise model. At varying levels of signal-to-noise, we quantitatively measure an upper bound on performance and compare estimates from linear and non-linear models. Finally, we apply our method to a set of ECGs collected by wearables in a mobile health study.

قيم البحث

اقرأ أيضاً

Continuous monitoring of cardiac health under free living condition is crucial to provide effective care for patients undergoing post operative recovery and individuals with high cardiac risk like the elderly. Capacitive Electrocardiogram (cECG) is o ne such technology which allows comfortable and long term monitoring through its ability to measure biopotential in conditions without having skin contact. cECG monitoring can be done using many household objects like chairs, beds and even car seats allowing for seamless monitoring of individuals. This method is unfortunately highly susceptible to motion artifacts which greatly limits its usage in clinical practice. The current use of cECG systems has been limited to performing rhythmic analysis. In this paper we propose a novel end-to-end deep learning architecture to perform the task of denoising capacitive ECG. The proposed network is trained using motion corrupted three channel cECG and a reference LEAD I ECG collected on individuals while driving a car. Further, we also propose a novel joint loss function to apply loss on both signal and frequency domain. We conduct extensive rhythmic analysis on the model predictions and the ground truth. We further evaluate the signal denoising using Mean Square Error(MSE) and Cross Correlation between model predictions and ground truth. We report MSE of 0.167 and Cross Correlation of 0.476. The reported results highlight the feasibility of performing morphological analysis using the filtered cECG. The proposed approach can allow for continuous and comprehensive monitoring of the individuals in free living conditions.
The transformer based model (e.g., FusingTF) has been employed recently for Electrocardiogram (ECG) signal classification. However, the high-dimensional embedding obtained via 1-D convolution and positional encoding can lead to the loss of the signal s own temporal information and a large amount of training parameters. In this paper, we propose a new method for ECG classification, called low-dimensional denoising embedding transformer (LDTF), which contains two components, i.e., low-dimensional denoising embedding (LDE) and transformer learning. In the LDE component, a low-dimensional representation of the signal is obtained in the time-frequency domain while preserving its own temporal information. And with the low dimensional embedding, the transformer learning is then used to obtain a deeper and narrower structure with fewer training parameters than that of the FusingTF. Experiments conducted on the MIT-BIH dataset demonstrates the effectiveness and the superior performance of our proposed method, as compared with state-of-the-art methods.
Recommender systems (RS) help users navigate large sets of items in the search for interesting ones. One approach to RS is Collaborative Filtering (CF), which is based on the idea that similar users are interested in similar items. Most model-based a pproaches to CF seek to train a machine-learning/data-mining model based on sparse data; the model is then used to provide recommendations. While most of the proposed approaches are effective for small-size situations, the combinatorial nature of the problem makes it impractical for medium-to-large instances. In this work we present a novel approach to CF that works by training a Denoising Auto-Encoder (DAE) on corrupted baskets, i.e., baskets from which one or more items have been removed. The DAE is then forced to learn to reconstruct the original basket given its corrupted input. Due to recent advancements in optimization and other technologies for training neural-network models (such as DAE), the proposed method results in a scalable and practical approach to CF. The contribution of this work is twofold: (1) to identify missing items in observed baskets and, thus, directly providing a CF model; and, (2) to construct a generative model of baskets which may be used, for instance, in simulation analysis or as part of a more complex analytical method.
In this study we focus on the prediction of basketball games in the Euroleague competition using machine learning modelling. The prediction is a binary classification problem, predicting whether a match finishes 1 (home win) or 2 (away win). Data is collected from the Euroleagues official website for the seasons 2016-2017, 2017-2018 and 2018-2019, i.e. in the new format era. Features are extracted from matches data and off-the-shelf supervised machine learning techniques are applied. We calibrate and validate our models. We find that simple machine learning models give accuracy not greater than 67% on the test set, worse than some sophisticated benchmark models. Additionally, the importance of this study lies in the wisdom of the basketball crowd and we demonstrate how the predicting power of a collective group of basketball enthusiasts can outperform machine learning models discussed in this study. We argue why the accuracy level of this group of experts should be set as the benchmark for future studies in the prediction of (European) basketball games using machine learning.
Recently proposed consistency-based Semi-Supervised Learning (SSL) methods such as the $Pi$-model, temporal ensembling, the mean teacher, or the virtual adversarial training, have advanced the state of the art in several SSL tasks. These methods can typically reach performances that are comparable to their fully supervised counterparts while using only a fraction of labelled examples. Despite these methodological advances, the understanding of these methods is still relatively limited. In this text, we analyse (variations of) the $Pi$-model in settings where analytically tractable results can be obtained. We establish links with Manifold Tangent Classifiers and demonstrate that the quality of the perturbations is key to obtaining reasonable SSL performances. Importantly, we propose a simple extension of the Hidden Manifold Model that naturally incorporates data-augmentation schemes and offers a framework for understanding and experimenting with SSL methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا