ﻻ يوجد ملخص باللغة العربية
The fractional quantum Hall effect (FQHE) stands as a quintessential manifestation of an interacting two-dimensional electron system. One of FQHEs most fundamental characteristics is the energy gap separating the incompressible ground state from its excitations. Yet, despite nearly four decades of investigations, a quantitative agreement between the theoretically calculated and experimentally measured energy gaps is lacking. Here we report a quantitative comparison between the measured energy gaps and the available theoretical calculations that take into account the role of finite layer thickness and Landau level mixing. Our systematic experimental study of the FQHE energy gaps uses very high-quality two-dimensional electron systems confined to GaAs quantum wells with varying well widths. All the measured energy gaps fall bellow the calculations, but as the electron layer thickness increases, the results of experiments and calculations come closer. Accounting for the role of disorder in a phenomenological manner, we find the measured energy gaps to be in reasonable quantitative agreement with calculations, although some discrepancies remain.
In the fractional quantum Hall effect regime we measure diagonal ($rho_{xx}$) and Hall ($rho_{xy}$) magnetoresistivity tensor components of two-dimensional electron system (2DES) in gated GaAs/Al$_{x}$Ga$_{1-x}$As heterojunctions, together with capac
What is the fate of the ground state of a two-dimensional electron system (2DES) at very low Landau level filling factors ($ u$) where interaction reigns supreme? An ordered array of electrons, the so-called Wigner crystal, has long been believed to
A recent mean-field approach to the fractional quantum Hall effect (QHE) is reviewed, with a special emphasis on the application to single-electron tunneling through a quantum dot in a high magnetic field. The theory is based on the adiabatic princip
We report on magnetotransport measurements of multi-terminal suspended graphene devices. Fully developed integer quantum Hall states appear in magnetic fields as low as 2 T. At higher fields the formation of longitudinal resistance minima and transve
We report observation of the fractional quantum Hall effect (FQHE) in high mobility multi-terminal graphene devices, fabricated on a single crystal boron nitride substrate. We observe an unexpected hierarchy in the emergent FQHE states that may be ex