ﻻ يوجد ملخص باللغة العربية
A recent mean-field approach to the fractional quantum Hall effect (QHE) is reviewed, with a special emphasis on the application to single-electron tunneling through a quantum dot in a high magnetic field. The theory is based on the adiabatic principle of Greiter and Wilczek, which maps an incompressible state in the integer QHE on the fractional QHE. The single-particle contribution to the addition spectrum is analyzed, for a quantum dot with a parabolic confining potential. The spectrum is shown to be related to the Fock-Darwin spectrum in the integer QHE, upon substitution of the electron charge by the fractional quasiparticle charge. Implications for the periodicity of the Aharonov-Bohm oscillations in the conductance are discussed.
We propose a device consisting in an antidot periodically driven in time by a magnetic field as a fractional quantum Hall counterpart of the celebrated mesoscopic capacitor-based single electron source. We fully characterize the setup as an ideal emi
Electron pairing is a rare phenomenon appearing only in a few unique physical systems; e.g., superconductors and Kondo-correlated quantum dots. Here, we report on an unexpected, but robust, electron pairing in the integer quantum Hall effect (IQHE) r
We review the construction of a low-energy effective field theory and its state space for abelian quantum Hall fluids. The scaling limit of the incompressible fluid is described by a Chern-Simons theory in 2+1 dimensions on a manifold with boundary.
We study theoretically resonant tunneling of composite fermions through their quasi-bound states around a fractional quantum Hall island, and find a rich set of possible transitions of the island state as a function of the magnetic field or the backg
We study the minimal excitations of fractional quantum Hall edges, extending the notion of levitons to interacting systems. Using both perturbative and exact calculations, we show that they arise in response to a Lorentzian potential with quantized f