ﻻ يوجد ملخص باللغة العربية
We report observation of the fractional quantum Hall effect (FQHE) in high mobility multi-terminal graphene devices, fabricated on a single crystal boron nitride substrate. We observe an unexpected hierarchy in the emergent FQHE states that may be explained by strongly interacting composite Fermions with full SU(4) symmetric underlying degrees of freedom. The FQHE gaps are measured from temperature dependent transport to be up 10 times larger than in any other semiconductor system. The remarkable strength and unusual hierarcy of the FQHE described here provides a unique opportunity to probe correlated behavior in the presence of expanded quantum degrees of freedom.
We show the emergence of fractional quantum Hall states in dry-transferred chemical vapor deposition (CVD) derived graphene assembled into heterostructures for magnetic fields from below 3 T to 35 T. Effective composite-fermion filling factors up to
When electrons are confined in two dimensions and subjected to strong magnetic fields, the Coulomb interactions between them become dominant and can lead to novel states of matter such as fractional quantum Hall liquids. In these liquids electrons li
The interplay between interaction and disorder-induced localization is of fundamental interest. This article addresses localization physics in the fractional quantum Hall state, where both interaction and disorder have nonperturbative consequences. W
Strongly correlated electron liquids which occur in quantizing magnetic fields reveal a cornucopia of fascinating quantum phenomena such as fractionally charged quasiparticles, anyonic statistics, topological order, and many others. Probing these eff
We report the observation of the quantized Hall effect in suspended graphene probed with a two-terminal lead geometry. The failure of earlier Hall-bar measurements is discussed and attributed to the placement of voltage probes in mesoscopic samples.