ﻻ يوجد ملخص باللغة العربية
In this paper, we prove a conjecture of Alexandrov that the generalized Brezin-Gross-Witten tau-functions are hypergeometric tau functions of BKP hierarchy after re-scaling. In particular, this shows that the original BGW tau-function, which has enumerative geometric interpretations, can be represented as a linear combination of Schur Q-polynomials with simple coefficients.
We study thermal correlation functions of Jackiw-Teitelboim (JT) supergravity. We focus on the case of JT supergravity on orientable surfaces without time-reversal symmetry. As shown by Stanford and Witten recently, the path integral amounts to the c
The Brezin-Gross-Witten (BGW) model is one of the basic examples in the class of non-eigenvalue unitary matrix models. The generalized BGW tau-function $tau_N$ was constructed from a one parametric deformation of the original BGW model using the gene
Using matrix model, Mironov and Morozov recently gave a formula which represents Kontsevich-Witten tau-function as a linear expansion of Schur Q-polynomials. In this paper, we will show directly that the Q-polynomial expansion in this formula satisfi
This is the third in a series of papers attempting to describe a uniform geometric framework in which many integrable systems can be placed. A soliton hierarchy can be constructed from a splitting of an infinite dimensional group $L$ as positive and
We develop an approach for constructing the Baxter Q-operators for generic sl(N) spin chains. The key element of our approach is the possibility to represent a solution of the the Yang Baxter equation in the factorized form. We prove that such a repr