ﻻ يوجد ملخص باللغة العربية
We study thermal correlation functions of Jackiw-Teitelboim (JT) supergravity. We focus on the case of JT supergravity on orientable surfaces without time-reversal symmetry. As shown by Stanford and Witten recently, the path integral amounts to the computation of the volume of the moduli space of super Riemann surfaces, which is characterized by the Brezin-Gross-Witten (BGW) tau-function of the KdV hierarchy. We find that the matrix model of JT supergravity is a special case of the BGW model with infinite number of couplings turned on in a specific way, by analogy with the relation between bosonic JT gravity and the Kontsevich-Witten (KW) model. We compute the genus expansion of the one-point function of JT supergravity and study its low-temperature behavior. In particular, we propose a non-perturbative completion of the one-point function in the Bessel case where all couplings in the BGW model are set to zero. We also investigate the free energy and correlators when the Ramond-Ramond flux is large. We find that by defining a suitable basis higher genus free energies are written exactly in the same form as those of the KW model, up to the constant terms coming from the volume of the unitary group. This implies that the constitutive relation of the KW model is universal to the tau-function of the KdV hierarchy.
In this paper, we prove a conjecture of Alexandrov that the generalized Brezin-Gross-Witten tau-functions are hypergeometric tau functions of BKP hierarchy after re-scaling. In particular, this shows that the original BGW tau-function, which has enum
The Brezin-Gross-Witten (BGW) model is one of the basic examples in the class of non-eigenvalue unitary matrix models. The generalized BGW tau-function $tau_N$ was constructed from a one parametric deformation of the original BGW model using the gene
It is proposed that a family of Jackiw-Teitelboim supergravites, recently discussed in connection with matrix models by Stanford and Witten, can be given a complete definition, to all orders in the topological expansion and beyond, in terms of a spec
Some recently proposed definitions of Jackiw-Teitelboim gravity and supergravities in terms of combinations of minimal string models are explored, with a focus on physics beyond the perturbative expansion in spacetime topology. While this formally in
Aspects of the low energy physics of certain Jackiw-Teitelboim gravity and supergravity theories are explored, using their recently presented non-perturbative description in terms of minimal string models. This regime necessarily involves non-perturb