ﻻ يوجد ملخص باللغة العربية
Using matrix model, Mironov and Morozov recently gave a formula which represents Kontsevich-Witten tau-function as a linear expansion of Schur Q-polynomials. In this paper, we will show directly that the Q-polynomial expansion in this formula satisfies the Virasoro constraints, and consequently obtain a proof of this formula without using matrix model. We also give a proof for Alexandrovs conjecture that Kontsevich-Witten tau-function is a hypergeometric tau-function of the BKP hierarchy after re-scaling.
The Brezin-Gross-Witten (BGW) model is one of the basic examples in the class of non-eigenvalue unitary matrix models. The generalized BGW tau-function $tau_N$ was constructed from a one parametric deformation of the original BGW model using the gene
In this paper, we prove a conjecture of Alexandrov that the generalized Brezin-Gross-Witten tau-functions are hypergeometric tau functions of BKP hierarchy after re-scaling. In particular, this shows that the original BGW tau-function, which has enum
In this paper, we show that the generating function for linear Hodge integrals over moduli spaces of stable maps to a nonsingular projective variety $X$ can be connected to the generating function for Gromov-Witten invariants of $X$ by a series of di
This is the third in a series of papers attempting to describe a uniform geometric framework in which many integrable systems can be placed. A soliton hierarchy can be constructed from a splitting of an infinite dimensional group $L$ as positive and
This article provides a summary of arXiv:1701.08899 and arXiv:1701.08902 where the authors studied the enumerative geometry of nested Hilbert schemes of points and curves on algebraic surfaces and their connections to threefold theories, and in parti