ترغب بنشر مسار تعليمي؟ اضغط هنا

High pressure study of low-Z superconductor Be$_{22}$Re

48   0   0.0 ( 0 )
 نشر من قبل James Hamlin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With $T_c sim 9.6~mathrm{K}$, Be$_{22}$Re exhibits one of the highest critical temperatures among Be-rich compounds. We have carried out a series of high-pressure electrical resistivity measurements on this compound to 30 GPa. The data show that the critical temperature $T_c$ is suppressed gradually at a rate of $dT_c/dP = -0.05~mathrm{K/GPa}$. Using density functional theory (DFT) calculations of the electronic and phonon density of states (DOS) and the measured critical temperature, we estimate that the rapid increase in lattice stiffening in Be$_{22}$Re overwhelms a moderate increase in the electron-ion interaction with pressure, resulting in the decrease in $T_c$. High pressure x-ray diffraction measurements show that the ambient pressure crystal structure of Be$_{22}$Re persists to at least 154 GPa. We discuss the relationship between low-Z Be-rich superconductors and the high-$T_c$ superhydrides.



قيم البحث

اقرأ أيضاً

The hydrostatic pressure effect on the newly discovered superconductor MgB2 has been determined. The transition temperature Tc was found to decrease linearly at a large rate of -1.6 K/GPa, in good quantitative agreement with the ensuing calculated va lue of -1.4 K/GPa within the BCS framework by Loa and Syassen, using the full-potential linearlized augmented plane-wave method. The relative pressure coefficient, dlnTc/dp, for MgB2 also falls between the known values for conventional sp- and d-superconductors. The observation, therefore, suggests that electron-phonon interaction plays a significant role in the superconductivity of the compound.
We report a high-pressure transport study of the upper-critical field, $B_{c2}(T)$, of the topological superconductor Sr$_{0.15}$Bi$_2$Se$_3$ ($T_c = 3.0$ K). $B_{c2}(T)$ was measured for magnetic fields directed along two orthogonal directions, $a$ and $a^*$, in the trigonal basal plane. While superconductivity is rapidly suppressed at the critical pressure $p_c sim 3.5$ GPa, the pronounced two-fold basal-plane anisotropy $B_{c2}^a/B_{c2}^{a^*} = 3.2$ at $T=0.3$ K, recently reported at ambient pressure (Pan et al., 2016), is reinforced and attains a value of $sim 5$ at the highest pressure (2.2 GPa). The data reveal that the unconventional superconducting state with broken rotational symmetry is robust under pressure.
500 - Feng Ye , Wei Bao , Songxue Chi 2014
The magnetic and iron vacancy orders in superconducting (Tl,Rb)2Fe4Se5 single-crystals are investigated by using a high-pressure neutron diffraction technique. Similar to the temperature effect, the block antiferromagnetic order gradually decreases u pon increasing pressure while the Fe vacancy superstructural order remains intact before its precipitous disappearance at the critical pressure Pc = 8.3 GPa. Combined with previously determined Pc for superconductivity, our phase diagram under pressure reveals the concurrence of the block AFM order, the iron vacancy order and superconductivity for the 245 superconductor. A synthesis of current experimental data in a coherent physical picture is attempted.
High-quality polycrystalline samples of LaO0.5F0.5BiS2 were obtained using high-pressure synthesis technique. The LaO0.5F0.5BiS2 sample prepared by heating at 700 C under 2 GPa showed superconductivity with superconducting transition temperatures (Tc ) of Tconset = 11.1 and Tczero = 8.5 K in the electrical resistivity measurements and Tconset = 11.5 and Tcirr = 9.4 K in the magnetic susceptibility measurements, which are obviously higher than those of the LaO0.5F0.5BiS2 polycrystalline samples obtained using conventional solid-state reaction. It was found that the high-Tc phase can be stabilized under high pressure and relatively-low annealing temperature. X-ray diffraction analysis revealed that the high-Tc phase possessed a small ratio of lattice constants of a and c, c/a.
Nuclear magnetic resonance (NMR) measurements of an iron (Fe)-based superconductor LaFeAsO_{1-x}F_x (x = 0.08 and 0.14) were performed at ambient pressure and under pressure. The relaxation rate 1/T_1 for the overdoped samples (x = 0.14) shows T-line ar behavior just above T_c, and pressure application enhances 1/T_1T similar to the behavior of T_c. This implies that 1/T_1T = constant originates from the Korringa relation, and an increase in the density of states at the Fermi energy D(E_F) leads to the enhancement of T_c. In the underdoped samples (x = 0.08), 1/T_1T measured at ambient pressure also shows T-independent behavior in a wide temperature range above T_c. However, it shows Curie-Weiss-like T dependence at 3.0 GPa accompanied by a small increase in T_c, suggesting that predominant antiferromagnetic fluctuation suppresses development of superconductivity or remarkable enhancement of T_c. The qualitatively different features between underdoped and overdoped samples are systematically explained by a band calculation with hole and electron pockets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا