ﻻ يوجد ملخص باللغة العربية
The magnetic and iron vacancy orders in superconducting (Tl,Rb)2Fe4Se5 single-crystals are investigated by using a high-pressure neutron diffraction technique. Similar to the temperature effect, the block antiferromagnetic order gradually decreases upon increasing pressure while the Fe vacancy superstructural order remains intact before its precipitous disappearance at the critical pressure Pc = 8.3 GPa. Combined with previously determined Pc for superconductivity, our phase diagram under pressure reveals the concurrence of the block AFM order, the iron vacancy order and superconductivity for the 245 superconductor. A synthesis of current experimental data in a coherent physical picture is attempted.
We observed in superconducting (Tl,Rb)2Fe4Se5 spin-wave branches that span an energy range from 6.5 to 209 meV. Spin dynamics are successfully described by a Heisenberg localized spin model whose dominant in-plane interactions include only the neares
A detailed elastic neutron scattering study of the structural and magnetic phase transitions in single-crystal SrFe$_2$As$_2$ reveals that the orthorhombic (O)-tetragonal (T) and the antiferromagnetic transitions coincide at $T_texttt{O}$ = $T_texttt
Neutron diffraction measurements of a high quality single crystal of CaFe2As2 are reported. A sharp transition was observed between the high temperature tetragonal and low temperature orthorhombic structures at TS = 172.5K (on cooling) and 173.5K (on
Millimeter sized single crystals of KCa_2Fe_4As_4F_2 were grown using a self-flux method. The chemical compositions and crystal structure were characterized carefully. Superconductivity with the critical transition T_c = 33.5 K was confirmed by both
Temperature and field-dependent magnetization $M(H,T)$ measurements and neutron scattering study of a single crystal CeSb$_2$ are presented. Several anomalies in the magnetization curves have been confirmed at low magnetic field, i.e., 15.6 K, 12 K,