ﻻ يوجد ملخص باللغة العربية
We consider magnetospheric structure of rotating neutron stars with internally twisted axisymmetric magnetic fields. The twist-induced and rotation-induced toroidal magnetic fields align/counter-align in different hemispheres. Using analytical and numerical calculations (with PHAEDRA code) we show that as a result the North-South symmetry is broken: the magnetosphere and the wind become angled, of conical shape. Angling of the magnetosphere affects the spindown (making it smaller for mild twists), makes the return current split unequally at the Y-point, produces anisotropic wind and linear acceleration that may dominate over gravitational acceleration in the Galactic potential and give a total kick up to $sim 100$ km/s. We also consider analytically the structure of the Y-point in the twisted magnetosphere, and provide estimate of the internal twist beyond which no stable solutions exist: over-twisted magnetospheres must produce plasma ejection events.
We continue our investigation of particle acceleration in the pulsar equatorial current sheet (ECS) that began with Contopoulos (2019) and Contopoulos & Stefanou (2019). Our basic premise has been that the charge carriers in the current sheet origina
The SKA will discover tens of thousands of pulsars and provide unprecedented data quality on these, as well as the currently known population, due to its unrivalled sensitivity. Here, we outline the state of the art of our understanding of magnetosph
The current state of the art in pulsar magnetosphere modeling assumes the force-free limit of magnetospheric plasma. This limit retains only partial information about plasma velocity and neglects plasma inertia and temperature. We carried out time-de
A good compromise between the resistive model and the PIC model is Aristotelian electrodynamics, which can include the back-reaction of the radiative photons onto particle motion and allow for a local dissipation where the force-free condition is vio
The magnetosphere of a rotating pulsar naturally develops a current sheet beyond the light cylinder (LC). Magnetic reconnection in this current sheet inevitably dissipates a nontrivial fraction of the pulsar spin-down power within a few LC radii. We