ﻻ يوجد ملخص باللغة العربية
The current state of the art in pulsar magnetosphere modeling assumes the force-free limit of magnetospheric plasma. This limit retains only partial information about plasma velocity and neglects plasma inertia and temperature. We carried out time-dependent 3D relativistic magnetohydrodynamic (MHD) simulations of oblique pulsar magnetospheres that improve upon force-free by retaining the full plasma velocity information and capturing plasma heating in strong current layers. We find rather low levels of magnetospheric dissipation, with less than 10% of pulsar spindown energy dissipated within a few light cylinder radii, and the MHD spindown that is consistent with that in force-free. While oblique magnetospheres are qualitatively similar to the rotating split-monopole force-free solution at large radii, we find substantial quantitative differences with the split-monopole, e.g., the luminosity of the pulsar wind is more equatorially concentrated than the split-monopole at high obliquities, and the flow velocity is modified by the emergence of reconnection flow directed into the current sheet.
The rotational period of isolated pulsars increases over time due to the extraction of angular momentum by electromagnetic torques. These torques also change the obliquity angle $alpha$ between the magnetic and rotational axes. Although actual pulsar
We perform global particle-in-cell simulations of pulsar magnetospheres including pair production, ion extraction from the surface, frame dragging corrections, and high energy photon emission and propagation. In the case of oblique rotators, effects
We consider magnetospheric structure of rotating neutron stars with internally twisted axisymmetric magnetic fields. The twist-induced and rotation-induced toroidal magnetic fields align/counter-align in different hemispheres. Using analytical and nu
We continue our investigation of particle acceleration in the pulsar equatorial current sheet (ECS) that began with Contopoulos (2019) and Contopoulos & Stefanou (2019). Our basic premise has been that the charge carriers in the current sheet origina
The SKA will discover tens of thousands of pulsars and provide unprecedented data quality on these, as well as the currently known population, due to its unrivalled sensitivity. Here, we outline the state of the art of our understanding of magnetosph