ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding pulsar magnetospheres with the SKA

238   0   0.0 ( 0 )
 نشر من قبل Aris Karastergiou
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The SKA will discover tens of thousands of pulsars and provide unprecedented data quality on these, as well as the currently known population, due to its unrivalled sensitivity. Here, we outline the state of the art of our understanding of magnetospheric radio emission from pulsars and how we will use the SKA to solve the open problems in pulsar magnetospheric physics.



قيم البحث

اقرأ أيضاً

We consider magnetospheric structure of rotating neutron stars with internally twisted axisymmetric magnetic fields. The twist-induced and rotation-induced toroidal magnetic fields align/counter-align in different hemispheres. Using analytical and nu merical calculations (with PHAEDRA code) we show that as a result the North-South symmetry is broken: the magnetosphere and the wind become angled, of conical shape. Angling of the magnetosphere affects the spindown (making it smaller for mild twists), makes the return current split unequally at the Y-point, produces anisotropic wind and linear acceleration that may dominate over gravitational acceleration in the Galactic potential and give a total kick up to $sim 100$ km/s. We also consider analytically the structure of the Y-point in the twisted magnetosphere, and provide estimate of the internal twist beyond which no stable solutions exist: over-twisted magnetospheres must produce plasma ejection events.
279 - Gang Cao , Xiongbang Yang 2019
A good compromise between the resistive model and the PIC model is Aristotelian electrodynamics, which can include the back-reaction of the radiative photons onto particle motion and allow for a local dissipation where the force-free condition is vio lated. We study the dissipative pulsar magnetosphere with Aristotelian electrodynamics where particle acceleration is fully balanced by radiation. The expression for the current density is defined by introducing a pair multiplicity. The 3D structure of the pulsar magnetosphere is then presented by solving the time-dependent Maxwell equations using a pseudo-spectral algorithm. It is found that the dissipative magnetosphere approaches the force-free solution and the dissipative region is more restricted to the current sheet outside the light-cylinder (LC) as the pair multiplicity increases. The spatial extension of the dissipative region is self-consistently controlled by the pair multiplicity. Our simulations show the high magnetospheric dissipation outside the LC for the low pair multiplicity.
The SKA will be transformational for many areas of science, but in particular for the study of neutron stars and their usage as tools for fundamental physics in the form of radio pulsars. Since the last science case for the SKA, numerous and unexpect ed advances have been made broadening the science goals even further. With the design of SKA Phase 1 being finalised, it is time to confront the new knowledge in this field, with the prospects promised by this exciting new telescope. While technically challenging, we can build our expectations on recent discoveries and technical developments that have reinforced our previous science goals.
66 - L. Levin , W. Armour , C. Baffa 2017
The Square Kilometre Array will be an amazing instrument for pulsar astronomy. While the full SKA will be sensitive enough to detect all pulsars in the Galaxy visible from Earth, already with SKA1, pulsar searches will discover enough pulsars to incr ease the currently known population by a factor of four, no doubt including a range of amazing unknown sources. Real time processing is needed to deal with the 60 PB of pulsar search data collected per day, using a signal processing pipeline required to perform more than 10 POps. Here we present the suggested design of the pulsar search engine for the SKA and discuss challenges and solutions to the pulsar search venture.
We continue our investigation of particle acceleration in the pulsar equatorial current sheet (ECS) that began with Contopoulos (2019) and Contopoulos & Stefanou (2019). Our basic premise has been that the charge carriers in the current sheet origina te in the polar caps as electron-positron pairs, and are carried along field lines that enter the equatorial current sheet beyond the magnetospheric Y-point. In this work we investigate further the charge replenishment of the ECS. We discovered that the flow of pairs from the rims of the polar caps cannot supply both the electric charge and the electric current of the ECS. The ECS must contain an extra amount of positronic (or electronic depending on orientation) electric current that originates in the stellar surface and flows outwards along the separatrices. We develop an iterative hybrid approach that self-consistently combines ideal force-free electrodynamics in the bulk of the magnetosphere with particle acceleration along the ECS. We derive analytic approximations for the orbits of the particles, and obtain the structure of the pulsar magnetosphere for various values of the pair-formation multiplicity parameter kappa. For realistic values kappa >> 1, the magnetosphere is practically indistinguishable from the ideal force-free one, and therefore, the calculation of the spectrum of high-energy radiation must be based on analytic approximations for the distribution of the accelerating electric field in the ECS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا