ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical Conditions in the Reconnection Layer in Pulsar Magnetospheres

100   0   0.0 ( 0 )
 نشر من قبل Dmitri A. Uzdensky
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetosphere of a rotating pulsar naturally develops a current sheet beyond the light cylinder (LC). Magnetic reconnection in this current sheet inevitably dissipates a nontrivial fraction of the pulsar spin-down power within a few LC radii. We develop a basic physical picture of reconnection in this environment and discuss its implications for the observed pulsed gamma-ray emission. We argue that reconnection proceeds in the plasmoid-dominated regime, via an hierarchical chain of multiple secondary islands/flux ropes. The inter-plasmoid reconnection layers are subject to strong synchrotron cooling, leading to significant plasma compression. Using the conditions of pressure balance across these current layers, the balance between the heating by magnetic energy dissipation and synchrotron cooling, and Amperes law, we obtain simple estimates for key parameters of the layers --- temperature, density, and layer thickness. In the comoving frame of the relativistic pulsar wind just outside of the equatorial current sheet, these basic parameters are uniquely determined by the strength of the reconnecting upstream magnetic field. For the case of the Crab pulsar, we find them to be of order 10 GeV, $10^{13} cm^{-3}$, and 10 cm, respectively. After accounting for the bulk Doppler boosting due to the pulsar wind, the synchrotron and inverse-Compton emission from the reconnecting current sheet can explain the observed pulsed high-energy (GeV) and VHE (~100 GeV) radiation, respectively. Also, we suggest that the rapid relative motions of the secondary plasmoids in the hierarchical chain may contribute to the production of the pulsar radio emission.

قيم البحث

اقرأ أيضاً

Particle dynamics in the electron current layer in collisionless magnetic reconnection is investigated by using a particle-in-cell simulation. Electron motion and velocity distribution functions are studied by tracking self-consistent trajectories. N ew classes of electron orbits are discovered: figure-eight-shaped regular orbits inside the electron jet, noncrossing regular orbits on the jet flanks, noncrossing Speiser orbits, and nongyrotropic electrons in the downstream of the jet termination region. Properties of a super-Alfv{e}nic outflow jet are attributed to an ensemble of electrons traveling through Speiser orbits. Noncrossing orbits are mediated by the polarization electric field near the electron current layer. The noncrossing electrons are found to be non-negligible in number density. The impact of these new orbits to electron mixing, spatial distribution of energetic electrons, and observational signatures, is presented.
We consider magnetospheric structure of rotating neutron stars with internally twisted axisymmetric magnetic fields. The twist-induced and rotation-induced toroidal magnetic fields align/counter-align in different hemispheres. Using analytical and nu merical calculations (with PHAEDRA code) we show that as a result the North-South symmetry is broken: the magnetosphere and the wind become angled, of conical shape. Angling of the magnetosphere affects the spindown (making it smaller for mild twists), makes the return current split unequally at the Y-point, produces anisotropic wind and linear acceleration that may dominate over gravitational acceleration in the Galactic potential and give a total kick up to $sim 100$ km/s. We also consider analytically the structure of the Y-point in the twisted magnetosphere, and provide estimate of the internal twist beyond which no stable solutions exist: over-twisted magnetospheres must produce plasma ejection events.
108 - Maxim Lyutikov 2020
Lyutikov (2002) predicted radio emission from soft gamma-ray repeaters (SGRs) during their bursting activity. Detection of a Mega-Jansky radio burst in temporal coincidence with high energy bursts from a Galactic magnetar SGR 1935+2154 confirms that prediction. Similarity of this radio event with Fast Radio Bursts (FRBs) suggests that FRBs are produced within magnetar magnetospheres. We demonstrate that SGR 1935+2154 satisfies the previously derived constraints on the physical parameters at the FRBs loci. Coherent radio emission is generated in the inner parts of the magnetosphere at $r< 100 R_{rm NS}$. The radio emission is produced by the yet unidentified plasma emission process, occurring during the initial stages of reconnection events.
Kinetic aspects of the ion current layer at the center of a reconnection outflow exhaust near the X-type region are investigated by a two-dimensional particle-in-cell (PIC) simulation. The layer consists of magnetized electrons and unmagnetized ions that carry a perpendicular electric current. The ion fluid appears to be nonideal, sub-Alfvenic, and nondissipative. The ion velocity distribution functions contain multiple populations such as global Speiser ions, local Speiser ions, and trapped ions. The particle motion of the local Speiser ions in an appropriately rotated coordinate system explains the ion fluid properties very well. The trapped ions are the first demonstration of the regular orbits in the chaotic particle dynamics [Chen and Palmadesso, J. Geophys. Res., 91, 1499 (1986)] in self-consistent PIC simulations. They would be observational signatures in the ion current layer near reconnection sites.
The SKA will discover tens of thousands of pulsars and provide unprecedented data quality on these, as well as the currently known population, due to its unrivalled sensitivity. Here, we outline the state of the art of our understanding of magnetosph eric radio emission from pulsars and how we will use the SKA to solve the open problems in pulsar magnetospheric physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا