ﻻ يوجد ملخص باللغة العربية
We derive a new interior solution for stellar compact objects in $fmathcal{(R)}$ gravity assuming a differential relation to constrain the Ricci curvature scalar. To this aim, we consider specific forms for the radial component of the metric and the first derivative of $fmathcal{(R)}$. After, the time component of the metric potential and the form of $f(mathcal R)$ function are derived. From these results, it is possible to obtain the radial and tangential components of pressure and the density. The resulting interior solution represents a physically motivated anisotropic neutron star model. It is possible to match it with a boundary exterior solution. From this matching, the components of metric potentials can be rewritten in terms of a compactness parameter $C$ which has to be $C=2GM/Rc^2 <<0.5$ for physical consistency. Other physical conditions for real stellar objects are taken into account according to the solution. We show that the model accurately bypasses conditions like the finiteness of radial and tangential pressures, and energy density at the center of the star, the positivity of these components through the stellar structure, and the negativity of the gradients. These conditions are satisfied if the energy-conditions hold. Moreover, we study the stability of the model by showing that Tolman-Oppenheimer-Volkoff equation is at hydrostatic equilibrium. The solution is matched with observational data of millisecond pulsars with a withe dwarf companion and pulsars presenting thermonuclear bursts.
In this study, we present a generalized spherically symmetric, anisotropic and static compact stellar model in $f(T)$ gravity, where $T$ represents the torsion scalar. By employing the Karmarkar condition we have obtained embedding class 1 metric fro
In this paper, we employ mimetic $f(R,T)$ gravity coupled with Lagrange multiplier and mimetic potential to yield viable inflationary cosmological solutions consistent with latest Planck and BICEP2/Keck Array data. We present here three viable inflat
In this paper, we study the stellar structure in terms of alternative theory of gravity specially by f (R;T) gravity theory. Here, we consider the function f (R;T) = R+2VT where R is the Ricci scalar, T is the stress-energy momentum and V is the coup
In this article we study the hydrostatic equilibrium configuration of neutron stars (NSs) and strange stars (SSs), whose fluid pressure is computed from the equations of state $p=omegarho^{5/3}$ and $p=0.28(rho-4{cal B})$, respectively, with $omega$
Torsion and nonmetricity are inherent ingredients in modifications of Einteins gravity that are based on affine spacetime geometries. In the context of pure f(R) gravity we discuss here, in some detail, the relatively unnoticed duality between torsio