ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic cosmological models in Horndeski gravity

84   0   0.0 ( 0 )
 نشر من قبل Mikhail Volkov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It was found recently that the anisotropies in the homogeneous Bianchi I cosmology considered within the context of a specific Horndeski theory are damped near the initial singularity instead of being amplified. In this work we extend the analysis of this phenomenon to cover the whole of the Horndeski family. We find that the phenomenon is absent in the K-essence and/or Kinetic Gravity Braiding theories, where the anisotropies grow as one approaches the singularity. The anisotropies are damped at early times only in more general Horndeski models whose Lagrangian includes terms quadratic and cubic in second derivatives of the scalar field. Such theories are often considered as being inconsistent with the observations because they predict a non-constant speed of gravitational waves. However, the predicted value of the speed at present can be close to the speed of light with any required precision, hence the theories actually agree with the present time observations. We consider two different examples of such theories, both characterized by a late self-acceleration and an early inflation driven by the non-minimal coupling. Their anisotropies show a maximum at intermediate times and approach zero at early and late times. The early inflationary stage exhibits an instability with respect to inhomogeneous perturbations, suggesting that the initial state of the universe should be inhomogeneous. However, more general Horndeski models may probably be stable.



قيم البحث

اقرأ أيضاً

We extend to the Horndeski realm the irreversible thermodynamics description of gravity previously studied in first generation scalar-tensor theories. We identify a subclass of Horndeski theories as an out-of--equilibrium state, while general relativ ity corresponds to an equilibrium state. In this context, we identify an effective heat current, temperature of gravity, and shear viscosity in the space of theories. The identification is accomplished by recasting the field equations as effective Einstein equations with an effective dissipative fluid, with Einstein gravity as the equilibrium state, following Eckarts first-order thermodynamics.
We investigate FRW cosmological solutions in the theory of modulus field coupled to gravity through a Gauss-Bonnet term. The explicit analytical forms of nonsingular asymptotics are presented for power-law and exponentially steep modulus coupling fun ctions. We study the influence of modulus field potential on these asymptotical regimes and find some forms of the potential which do not destroy the nonsingular behavior. In particular, we obtain that exponentially steep coupling functions arising from the string theory do not allow nonsingular past asymptotic unless modulus field potential tends to zero for modulus field $psi to pm infty$. Finally, the modification of the chaotic dynamics in the closed FRW universe due to presence of the Gauss-Bonnet term is discussed.
We derive a new interior solution for stellar compact objects in $fmathcal{(R)}$ gravity assuming a differential relation to constrain the Ricci curvature scalar. To this aim, we consider specific forms for the radial component of the metric and the first derivative of $fmathcal{(R)}$. After, the time component of the metric potential and the form of $f(mathcal R)$ function are derived. From these results, it is possible to obtain the radial and tangential components of pressure and the density. The resulting interior solution represents a physically motivated anisotropic neutron star model. It is possible to match it with a boundary exterior solution. From this matching, the components of metric potentials can be rewritten in terms of a compactness parameter $C$ which has to be $C=2GM/Rc^2 <<0.5$ for physical consistency. Other physical conditions for real stellar objects are taken into account according to the solution. We show that the model accurately bypasses conditions like the finiteness of radial and tangential pressures, and energy density at the center of the star, the positivity of these components through the stellar structure, and the negativity of the gradients. These conditions are satisfied if the energy-conditions hold. Moreover, we study the stability of the model by showing that Tolman-Oppenheimer-Volkoff equation is at hydrostatic equilibrium. The solution is matched with observational data of millisecond pulsars with a withe dwarf companion and pulsars presenting thermonuclear bursts.
Gravity is believed to have deep and inherent relation to thermodynamics. We study phase transition and critical behavior in the extended phase space of asymptotic anti de-Sitter (AdS) black holes in Einstein-Horndeski gravity. We demonstrate that th e black hole in Einstein-Horndeski gravity undergo phase transition and P-V criticality mimicking the van der Waals gas-liquid system. The key approach in our study is to introduce a more reasonable pressure instead of previous pressure $P=-Lambda/8pi$ related to cosmological constant $Lambda$, and this proper pressure is given insight from the asymptotical behaviour of this black hole. Moreover, we also first obtain P-V criticality in the two cases with $Lambda=0$ and $Lambda>0$ in our paper, which implicates that the cosmological constant $Lambda$ may be not a necessary pressure candidate for black holes at the microscopic level. We present critical exponents for these phase transition processes.
Symmetric Teleparallel Gravity is an exceptional theory of gravity that is consistent with the vanishing affine connection. This theory is an alternative and a simpler geometrical formulation of general relativity, where the non-metricity $Q$ drives the gravitational interaction. Our interest lies in exploring the cosmological bouncing scenarios in a flat Friedmann-Lima^itre-Robertson-Walker (FLRW) spacetime within this framework. We explore bouncing scenarios with two different Lagrangian forms of $f(Q)$ such as a linearly and non-linearly dependence on $Q$. We have successfully examined all the energy conditions and stability analysis for both models to present a matter bounce.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا