ﻻ يوجد ملخص باللغة العربية
Label noise in multiclass classification is a major obstacle to the deployment of learning systems. However, unlike the widely used class-conditional noise (CCN) assumption that the noisy label is independent of the input feature given the true label, label noise in real-world datasets can be aleatory and heavily dependent on individual instances. In this work, we investigate the instance-dependent noise (IDN) model and propose an efficient approximation of IDN to capture the instance-specific label corruption. Concretely, noting the fact that most columns of the IDN transition matrix have only limited influence on the class-posterior estimation, we propose a variational approximation that uses a single-scalar confidence parameter. To cope with the situation where the mapping from the instance to its confidence value could vary significantly for two adjacent instances, we suggest using instance embedding that assigns a trainable parameter to each instance. The resulting instance-confidence embedding (ICE) method not only performs well under label noise but also can effectively detect ambiguous or mislabeled instances. We validate its utility on various image and text classification tasks.
Learning with the textit{instance-dependent} label noise is challenging, because it is hard to model such real-world noise. Note that there are psychological and physiological evidences showing that we humans perceive instances by decomposing them in
Human-annotated labels are often prone to noise, and the presence of such noise will degrade the performance of the resulting deep neural network (DNN) models. Much of the literature (with several recent exceptions) of learning with noisy labels focu
The theory of reinforcement learning has focused on two fundamental problems: achieving low regret, and identifying $epsilon$-optimal policies. While a simple reduction allows one to apply a low-regret algorithm to obtain an $epsilon$-optimal policy
In label-noise learning, estimating the transition matrix is a hot topic as the matrix plays an important role in building statistically consistent classifiers. Traditionally, the transition from clean distribution to noisy distribution (i.e., clean
Supervised learning under label noise has seen numerous advances recently, while existing theoretical findings and empirical results broadly build up on the class-conditional noise (CCN) assumption that the noise is independent of input features give