ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond No Regret: Instance-Dependent PAC Reinforcement Learning

130   0   0.0 ( 0 )
 نشر من قبل Andrew Wagenmaker
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The theory of reinforcement learning has focused on two fundamental problems: achieving low regret, and identifying $epsilon$-optimal policies. While a simple reduction allows one to apply a low-regret algorithm to obtain an $epsilon$-optimal policy and achieve the worst-case optimal rate, it is unknown whether low-regret algorithms can obtain the instance-optimal rate for policy identification. We show that this is not possible -- there exists a fundamental tradeoff between achieving low regret and identifying an $epsilon$-optimal policy at the instance-optimal rate. Motivated by our negative finding, we propose a new measure of instance-dependent sample complexity for PAC tabular reinforcement learning which explicitly accounts for the attainable state visitation distributions in the underlying MDP. We then propose and analyze a novel, planning-based algorithm which attains this sample complexity -- yielding a complexity which scales with the suboptimality gaps and the ``reachability of a state. We show that our algorithm is nearly minimax optimal, and on several examples that our instance-dependent sample complexity offers significant improvements over worst-case bounds.

قيم البحث

اقرأ أيضاً

We provide improved gap-dependent regret bounds for reinforcement learning in finite episodic Markov decision processes. Compared to prior work, our bounds depend on alternative definitions of gaps. These definitions are based on the insight that, in order to achieve a favorable regret, an algorithm does not need to learn how to behave optimally in states that are not reached by an optimal policy. We prove tighter upper regret bounds for optimistic algorithms and accompany them with new information-theoretic lower bounds for a large class of MDPs. Our results show that optimistic algorithms can not achieve the information-theoretic lower bounds even in deterministic MDPs unless there is a unique optimal policy.
Agents trained via deep reinforcement learning (RL) routinely fail to generalize to unseen environments, even when these share the same underlying dynamics as the training levels. Understanding the generalization properties of RL is one of the challe nges of modern machine learning. Towards this goal, we analyze policy learning in the context of Partially Observable Markov Decision Processes (POMDPs) and formalize the dynamics of training levels as instances. We prove that, independently of the exploration strategy, reusing instances introduces significant changes on the effective Markov dynamics the agent observes during training. Maximizing expected rewards impacts the learned belief state of the agent by inducing undesired instance specific speedrunning policies instead of generalizeable ones, which are suboptimal on the training set. We provide generalization bounds to the value gap in train and test environments based on the number of training instances, and use insights based on these to improve performance on unseen levels. We propose training a shared belief representation over an ensemble of specialized policies, from which we compute a consensus policy that is used for data collection, disallowing instance specific exploitation. We experimentally validate our theory, observations, and the proposed computational solution over the CoinRun benchmark.
We consider the regret minimization problem in reinforcement learning (RL) in the episodic setting. In many real-world RL environments, the state and action spaces are continuous or very large. Existing approaches establish regret guarantees by eithe r a low-dimensional representation of the stochastic transition model or an approximation of the $Q$-functions. However, the understanding of function approximation schemes for state-value functions largely remains missing. In this paper, we propose an online model-based RL algorithm, namely the CME-RL, that learns representations of transition distributions as embeddings in a reproducing kernel Hilbert space while carefully balancing the exploitation-exploration tradeoff. We demonstrate the efficiency of our algorithm by proving a frequentist (worst-case) regret bound that is of order $tilde{O}big(Hgamma_Nsqrt{N}big)$, where $H$ is the episode length, $N$ is the total number of time steps and $gamma_N$ is an information theoretic quantity relating the effective dimension of the state-action feature space. Our method bypasses the need for estimating transition probabilities and applies to any domain on which kernels can be defined. It also brings new insights into the general theory of kernel methods for approximate inference and RL regret minimization.
89 - Tianyu Liu , Jie Lu , Zheng Yan 2021
By leveraging experience from previous tasks, meta-learning algorithms can achieve effective fast adaptation ability when encountering new tasks. However it is unclear how the generalization property applies to new tasks. Probably approximately corre ct (PAC) Bayes bound theory provides a theoretical framework to analyze the generalization performance for meta-learning. We derive three novel generalisation error bounds for meta-learning based on PAC-Bayes relative entropy bound. Furthermore, using the empirical risk minimization (ERM) method, a PAC-Bayes bound for meta-learning with data-dependent prior is developed. Experiments illustrate that the proposed three PAC-Bayes bounds for meta-learning guarantee a competitive generalization performance guarantee, and the extended PAC-Bayes bound with data-dependent prior can achieve rapid convergence ability.
We consider multi-objective optimization (MOO) of an unknown vector-valued function in the non-parametric Bayesian optimization (BO) setting, with the aim being to learn points on the Pareto front of the objectives. Most existing BO algorithms do not model the fact that the multiple objectives, or equivalently, tasks can share similarities, and even the few that do lack rigorous, finite-time regret guarantees that capture explicitly inter-task structure. In this work, we address this problem by modelling inter-task dependencies using a multi-task kernel and develop two novel BO algorithms based on random scalarizations of the objectives. Our algorithms employ vector-valued kernel regression as a stepping stone and belong to the upper confidence bound class of algorithms. Under a smoothness assumption that the unknown vector-valued function is an element of the reproducing kernel Hilbert space associated with the multi-task kernel, we derive worst-case regret bounds for our algorithms that explicitly capture the similarities between tasks. We numerically benchmark our algorithms on both synthetic and real-life MOO problems, and show the advantages offered by learning with multi-task kernels.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا