ﻻ يوجد ملخص باللغة العربية
In label-noise learning, estimating the transition matrix is a hot topic as the matrix plays an important role in building statistically consistent classifiers. Traditionally, the transition from clean distribution to noisy distribution (i.e., clean label transition matrix) has been widely exploited to learn a clean label classifier by employing the noisy data. Motivated by that classifiers mostly output Bayes optimal labels for prediction, in this paper, we study to directly model the transition from Bayes optimal distribution to noisy distribution (i.e., Bayes label transition matrix) and learn a Bayes optimal label classifier. Note that given only noisy data, it is ill-posed to estimate either the clean label transition matrix or the Bayes label transition matrix. But favorably, Bayes optimal labels are less uncertain compared with the clean labels, i.e., the class posteriors of Bayes optimal labels are one-hot vectors while those of clean labels are not. This enables two advantages to estimate the Bayes label transition matrix, i.e., (a) we could theoretically recover a set of Bayes optimal labels under mild conditions; (b) the feasible solution space is much smaller. By exploiting the advantages, we estimate the Bayes label transition matrix by employing a deep neural network in a parameterized way, leading to better generalization and superior classification performance.
Learning with the textit{instance-dependent} label noise is challenging, because it is hard to model such real-world noise. Note that there are psychological and physiological evidences showing that we humans perceive instances by decomposing them in
Human-annotated labels are often prone to noise, and the presence of such noise will degrade the performance of the resulting deep neural network (DNN) models. Much of the literature (with several recent exceptions) of learning with noisy labels focu
Supervised learning under label noise has seen numerous advances recently, while existing theoretical findings and empirical results broadly build up on the class-conditional noise (CCN) assumption that the noise is independent of input features give
Label noise in multiclass classification is a major obstacle to the deployment of learning systems. However, unlike the widely used class-conditional noise (CCN) assumption that the noisy label is independent of the input feature given the true label
Label noise will degenerate the performance of deep learning algorithms because deep neural networks easily overfit label errors. Let X and Y denote the instance and clean label, respectively. When Y is a cause of X, according to which many datasets