ترغب بنشر مسار تعليمي؟ اضغط هنا

TOI-1634 b: an Ultra-Short Period Keystone Planet Sitting Inside the M Dwarf Radius Valley

82   0   0.0 ( 0 )
 نشر من قبل Ryan Cloutier
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Studies of close-in planets orbiting M dwarfs have suggested that the M dwarf radius valley may be well-explained by distinct formation timescales between enveloped terrestrials, and rocky planets that form at late times in a gas-depleted environment. This scenario is at odds with the picture that close-in rocky planets form with a primordial gaseous envelope that is subsequently stripped away by some thermally-driven mass loss process. These two physical scenarios make unique predictions of the rocky/enveloped transitions dependence on orbital separation such that studying the compositions of planets within the M dwarf radius valley may be able to establish the dominant physics. Here, we present the discovery of one such keystone planet: the ultra-short period planet TOI-1634 b ($P=0.989$ days, $F=121 F_{oplus}$, $r_p = 1.790^{+0.080}_{-0.081} R_{oplus}$) orbiting a nearby M2 dwarf ($K_s=8.7$, $R_s=0.45 R_{odot}$, $M_s=0.50 M_{odot}$) and whose size and orbital period sit within the M dwarf radius valley. We confirm the TESS-discovered planet candidate using extensive ground-based follow-up campaigns, including a set of 32 precise radial velocity measurements from HARPS-N. We measure a planetary mass of $4.91^{+0.68}_{-0.70} M_{oplus}$, which makes TOI-1634 b inconsistent with an Earth-like composition at $5.9sigma$ and thus requires either an extended gaseous envelope, a large volatile-rich layer, or a rocky portion that is not dominated by iron and silicates to explain its mass and radius. The discovery that the bulk composition of TOI-1634 b is inconsistent with that of the Earth favors the gas-depleted formation mechanism to explain the emergence of the radius valley around M dwarfs with $M_slesssim 0.5 M_{odot}$.

قيم البحث

اقرأ أيضاً

Small planets on close-in orbits tend to exhibit envelope mass fractions of either effectively zero or up to a few percent depending on their size and orbital period. Models of thermally-driven atmospheric mass loss and of terrestrial planet formatio n in a gas-poor environment make distinct predictions regarding the location of this rocky/non-rocky transition in period-radius space. Here we present the confirmation of TOI-1235 b ($P=3.44$ days, $r_p=1.738^{+0.087}_{-0.076}$ R$_{oplus}$), a planet whose size and period are intermediate between the competing model predictions thus making the system an important test case for emergence models of the rocky/non-rocky transition around early M dwarfs ($R_s=0.630pm 0.015$ R$_{odot}$, $M_s=0.640pm 0.016$ M$_{odot}$). We confirm the TESS planet discovery using reconnaissance spectroscopy, ground-based photometry, high-resolution imaging, and a set of 38 precise radial-velocities from HARPS-N and HIRES. We measure a planet mass of $6.91^{+0.75}_{-0.85}$ M$_{oplus}$, which implies an iron core mass fraction of $20^{+15}_{-12}$% in the absence of a gaseous envelope. The bulk composition of TOI-1235 b is therefore consistent with being Earth-like and we constrain a H/He envelope mass fraction to be $<0.5$% at 90% confidence. Our results are consistent with model predictions from thermally-driven atmospheric mass loss but not with gas-poor formation, suggesting that the former class of processes remain efficient at sculpting close-in planets around early M dwarfs. Our RV analysis also reveals a strong periodicity close to the first harmonic of the photometrically-determined stellar rotation period that we treat as stellar activity, despite other lines of evidence favoring a planetary origin ($P=21.8^{+0.9}_{-0.8}$ days, $m_psin{i}=13.0^{+3.8}_{-5.3}$ M$_{oplus}$) that cannot be firmly ruled out by our data.
Data from the newly-commissioned textit{Transiting Exoplanet Survey Satellite} (TESS) has revealed a hot Earth around LHS 3844, an M dwarf located 15 pc away. The planet has a radius of $1.32pm 0.02$ $R_oplus$ and orbits the star every 11 hours. Alth ough the existence of an atmosphere around such a strongly irradiated planet is questionable, the star is bright enough ($I=11.9$, $K=9.1$) for this possibility to be investigated with transit and occultation spectroscopy. The stars brightness and the planets short period will also facilitate the measurement of the planets mass through Doppler spectroscopy.
Dynamical histories of planetary systems, as well as atmospheric evolution of highly irradiated planets, can be studied by characterizing the ultra-short-period planet population, which the TESS mission is particularly well suited to discover. Here, we report on the follow-up of a transit signal detected in the TESS sector 19 photometric time series of the M3.0 V star TOI-1685 (2MASS J04342248+4302148). We confirm the planetary nature of the transit signal, which has a period of P_b=0.6691403+0.0000023-0.0000021 d, using precise radial velocity measurements taken with the CARMENES spectrograph. From the joint photometry and radial velocity analysis, we estimate the following parameters for TOI-1685 b: a mass of M_b=3.78+/-0.63 M_Earth, a radius of R_b=1.70+/-0.07 R_Earth, which together result in a bulk density of rho_b=4.21+0.95-0.82 g/cm3, and an equilibrium temperature of Teq_b=1069+/-16 K. TOI-1685 b is the least dense ultra-short period planet around an M dwarf known to date. TOI-1685 b is also one of the hottest transiting Earth-size planets with accurate dynamical mass measurements, which makes it a particularly attractive target for thermal emission spectroscopy. Additionally, we report a further non-transiting planet candidate in the system, TOI-1685[c], with an orbital period of P_[c]=9.02+0.10-0.12 d.
Context: We report the discovery of TOI-519 b (TIC 218795833), a transiting substellar object (R = 1.07 RJup) orbiting a faint M dwarf (V = 17.35) on a 1.26 d orbit. Brown dwarfs and massive planets orbiting M dwarfs on short-period orbits are rare, but more have already been discovered than expected from planet formation models. TOI-519 is a valuable addition into this group of unlikely systems, and adds towards our understanding of the boundaries of planet formation. Aims: We set out to determine the nature of the Transiting Exoplanet Survey Satellite (TESS ) object of interest TOI-519 b. Methods: Our analysis uses a SPOC-pipeline TESS light curve from Sector 7, multicolour transit photometry observed with MuSCAT2 and MuSCAT, and transit photometry observed with the LCOGT telescopes. We estimate the radius of the transiting object using multicolour transit modelling, and set upper limits for its mass, effective temperature, and Bond albedo using a phase curve model that includes Doppler boosting, ellipsoidal variations, thermal emission, and reflected light components. Results: TOI-519 b is a substellar object with a radius posterior median of 1.07 RJup and 5th and 95th percentiles of 0.66 and 1.20 RJup, respectively, where most of the uncertainty comes from the uncertainty in the stellar radius. The phase curve analysis sets an upper effective temperature limit of 1800 K, an upper Bond albedo limit of 0.49, and a companion mass upper limit of 14 MJup. The companion radius estimate combined with the Teff and mass limits suggests that the companion is more likely a planet than a brown dwarf, but a brown-dwarf scenario is more likely a priori given the lack of known massive planets in 1 day orbits around M dwarfs with Teff < 3800 K, and the existence of some (but few) brown dwarfs.
We report on precise Doppler measurements of L231-32 (TOI-270), a nearby M dwarf ($d=22$ pc, $M_star = 0.39$ M$_odot$, $R_star = 0.38$ R$_odot$), which hosts three transiting planets that were recently discovered using data from the Transiting Exopla net Survey Satellite (TESS). The three planets are 1.2, 2.4, and 2.1 times the size of Earth and have orbital periods of 3.4, 5.7, and 11.4 days. We obtained 29 high-resolution optical spectra with the newly commissioned Echelle Spectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) and 58 spectra using the High Accuracy Radial velocity Planet Searcher (HARPS). From these observations, we find the masses of the planets to be $1.58 pm 0.26$, $6.15 pm 0.37$, and $4.78 pm 0.43$ M$_oplus$, respectively. The combination of radius and mass measurements suggests that the innermost planet has a rocky composition similar to that of Earth, while the outer two planets have lower densities. Thus, the inner planet and the outer planets are on opposite sides of the `radius valley -- a region in the radius-period diagram with relatively few members, which has been interpreted as a consequence of atmospheric photo-evaporation. We place these findings into the context of other small close-in planets orbiting M dwarf stars, and use support vector machines to determine the location and slope of the M dwarf ($T_mathrm{eff} < 4000$ K) radius valley as a function of orbital period. We compare the location of the M dwarf radius valley to the radius valley observed for FGK stars, and find that its location is a good match to photo-evaporation and core-powered mass loss models. Finally, we show that planets below the M dwarf radius valley have compositions consistent with stripped rocky cores, whereas most planets above have a lower density consistent with the presence of a H-He atmosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا