ترغب بنشر مسار تعليمي؟ اضغط هنا

TESS Discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844

87   0   0.0 ( 0 )
 نشر من قبل Roland Vanderspek
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Data from the newly-commissioned textit{Transiting Exoplanet Survey Satellite} (TESS) has revealed a hot Earth around LHS 3844, an M dwarf located 15 pc away. The planet has a radius of $1.32pm 0.02$ $R_oplus$ and orbits the star every 11 hours. Although the existence of an atmosphere around such a strongly irradiated planet is questionable, the star is bright enough ($I=11.9$, $K=9.1$) for this possibility to be investigated with transit and occultation spectroscopy. The stars brightness and the planets short period will also facilitate the measurement of the planets mass through Doppler spectroscopy.

قيم البحث

اقرأ أيضاً

We report the discovery of TOI 263.01 (TIC 120916706), a transiting substellar object (R = 0.87 RJup) orbiting a faint M3.5~V dwarf (V=18.97) on a 0.56~d orbit. We set out to determine the nature of the TESS planet candidate TOI 263.01 using ground-b ased multicolour transit photometry. The host star is faint, which makes RV confirmation challenging, but the large transit depth makes the candidate suitable for validation through multicolour photometry. Our analysis combines three transits observed simultaneously in r, i, and z_s bands using the MuSCAT2 multicolour imager, three LCOGT-observed transit light curves in g, r, and i bands, a TESS light curve from Sector 3, and a low-resolution spectrum for stellar characterisation observed with the ALFOSC spectrograph. We model the light curves with PyTransit using a transit model that includes a physics-based light contamination component that allows us to estimate the contamination from unresolved sources from the multicolour photometry. This allows us to derive the true planet-star radius ratio marginalised over the contamination allowed by the photometry, and, combined with the stellar radius, gives us a reliable estimate of the objects absolute radius. The ground-based photometry excludes contamination from unresolved sources with a significant colour difference to TOI 263. Further, contamination from sources of same stellar type as the host is constrained to levels where the true radius ratio posterior has a median of 0.217. The median radius ratio corresponds to an absolute planet radius of 0.87 RJup, which confirms the substellar nature of the planet candidate. The object is either a giant planet or a brown dwarf (BD) located deep inside the so-called brown dwarf desert. Both possibilities offer a challenge to current planet/BD formation models and makes 263.01 an object deserving of in-depth follow-up studies.
219 - Kristo Ment 2018
LHS 1140 is a nearby mid-M dwarf known to host a temperate rocky super-Earth (LHS 1140 b) on a 24.737-day orbit. Based on photometric observations by MEarth and Spitzer as well as Doppler spectroscopy from HARPS, we report the discovery of an additio nal transiting rocky companion (LHS 1140 c) with a mass of $1.81pm0.39~{rm M_{Earth}}$ and a radius of $1.282pm0.024~{rm R_{Earth}}$ on a tighter, 3.77795-day orbit. We also obtain more precise estimates of the mass and radius of LHS 1140 b to be $6.98pm0.89~{rm M_{Earth}}$ and $1.727pm0.032~{rm R_{Earth}}$. The mean densities of planets b and c are $7.5pm1.0~rm{g/cm^3}$ and $4.7pm1.1~rm{g/cm^3}$, respectively, both consistent with the Earths ratio of iron to magnesium silicate. The orbital eccentricities of LHS 1140 b and c are consistent with circular orbits and constrained to be below 0.06 and 0.31, respectively, with 90% confidence. Because the orbits of the two planets are co-planar and because we know from previous analyses of Kepler data that compact systems of small planets orbiting M dwarfs are commonplace, a search for more transiting planets in the LHS 1140 system could be fruitful. LHS 1140 c is one of the few known nearby terrestrial planets whose atmosphere could be studied with the upcoming James Webb Space Telescope.
Studies of close-in planets orbiting M dwarfs have suggested that the M dwarf radius valley may be well-explained by distinct formation timescales between enveloped terrestrials, and rocky planets that form at late times in a gas-depleted environment . This scenario is at odds with the picture that close-in rocky planets form with a primordial gaseous envelope that is subsequently stripped away by some thermally-driven mass loss process. These two physical scenarios make unique predictions of the rocky/enveloped transitions dependence on orbital separation such that studying the compositions of planets within the M dwarf radius valley may be able to establish the dominant physics. Here, we present the discovery of one such keystone planet: the ultra-short period planet TOI-1634 b ($P=0.989$ days, $F=121 F_{oplus}$, $r_p = 1.790^{+0.080}_{-0.081} R_{oplus}$) orbiting a nearby M2 dwarf ($K_s=8.7$, $R_s=0.45 R_{odot}$, $M_s=0.50 M_{odot}$) and whose size and orbital period sit within the M dwarf radius valley. We confirm the TESS-discovered planet candidate using extensive ground-based follow-up campaigns, including a set of 32 precise radial velocity measurements from HARPS-N. We measure a planetary mass of $4.91^{+0.68}_{-0.70} M_{oplus}$, which makes TOI-1634 b inconsistent with an Earth-like composition at $5.9sigma$ and thus requires either an extended gaseous envelope, a large volatile-rich layer, or a rocky portion that is not dominated by iron and silicates to explain its mass and radius. The discovery that the bulk composition of TOI-1634 b is inconsistent with that of the Earth favors the gas-depleted formation mechanism to explain the emergence of the radius valley around M dwarfs with $M_slesssim 0.5 M_{odot}$.
We report the discovery of a new ultra-short-period planet and summarize the properties of all such planets for which the mass and radius have been measured. The new planet, EPIC~228732031b, was discovered in {it K2} Campaign 10. It has a radius of 1 .81$^{+0.16}_{-0.12}~R_{oplus}$ and orbits a G dwarf with a period of 8.9 hours. Radial velocities obtained with Magellan/PFS and TNG/HARPS-N show evidence for stellar activity along with orbital motion. We determined the planetary mass using two different methods: (1) the floating chunk offset method, based only on changes in velocity observed on the same night, and (2) a Gaussian process regression based on both the radial-velocity and photometric time series. The results are consistent and lead to a mass measurement of $6.5 pm 1.6~M_{oplus}$, and a mean density of $6.0^{+3.0}_{-2.7}$~g~cm$^{-3}$.
We present the confirmation of two new planets transiting the nearby mid-M dwarf LTT 3780 (TIC 36724087, TOI-732, $V=13.07$, $K_s=8.204$, $R_s$=0.374 R$_{odot}$, $M_s$=0.401 M$_{odot}$, d=22 pc). The two planet candidates are identified in a single T ESS sector and are validated with reconnaissance spectroscopy, ground-based photometric follow-up, and high-resolution imaging. With measured orbital periods of $P_b=0.77$ days, $P_c=12.25$ days and sizes $r_{p,b}=1.33pm 0.07$ R$_{oplus}$, $r_{p,c}=2.30pm 0.16$ R$_{oplus}$, the two planets span the radius valley in period-radius space around low mass stars thus making the system a laboratory to test competing theories of the emergence of the radius valley in that stellar mass regime. By combining 63 precise radial-velocity measurements from HARPS and HARPS-N, we measure planet masses of $m_{p,b}=2.62^{+0.48}_{-0.46}$ M$_{oplus}$ and $m_{p,c}=8.6^{+1.6}_{-1.3}$ M$_{oplus}$, which indicates that LTT 3780b has a bulk composition consistent with being Earth-like, while LTT 3780c likely hosts an extended H/He envelope. We show that the recovered planetary masses are consistent with predictions from both photoevaporation and from core-powered mass loss models. The brightness and small size of LTT 3780, along with the measured planetary parameters, render LTT 3780b and c as accessible targets for atmospheric characterization of planets within the same planetary system and spanning the radius valley.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا