ﻻ يوجد ملخص باللغة العربية
Small planets on close-in orbits tend to exhibit envelope mass fractions of either effectively zero or up to a few percent depending on their size and orbital period. Models of thermally-driven atmospheric mass loss and of terrestrial planet formation in a gas-poor environment make distinct predictions regarding the location of this rocky/non-rocky transition in period-radius space. Here we present the confirmation of TOI-1235 b ($P=3.44$ days, $r_p=1.738^{+0.087}_{-0.076}$ R$_{oplus}$), a planet whose size and period are intermediate between the competing model predictions thus making the system an important test case for emergence models of the rocky/non-rocky transition around early M dwarfs ($R_s=0.630pm 0.015$ R$_{odot}$, $M_s=0.640pm 0.016$ M$_{odot}$). We confirm the TESS planet discovery using reconnaissance spectroscopy, ground-based photometry, high-resolution imaging, and a set of 38 precise radial-velocities from HARPS-N and HIRES. We measure a planet mass of $6.91^{+0.75}_{-0.85}$ M$_{oplus}$, which implies an iron core mass fraction of $20^{+15}_{-12}$% in the absence of a gaseous envelope. The bulk composition of TOI-1235 b is therefore consistent with being Earth-like and we constrain a H/He envelope mass fraction to be $<0.5$% at 90% confidence. Our results are consistent with model predictions from thermally-driven atmospheric mass loss but not with gas-poor formation, suggesting that the former class of processes remain efficient at sculpting close-in planets around early M dwarfs. Our RV analysis also reveals a strong periodicity close to the first harmonic of the photometrically-determined stellar rotation period that we treat as stellar activity, despite other lines of evidence favoring a planetary origin ($P=21.8^{+0.9}_{-0.8}$ days, $m_psin{i}=13.0^{+3.8}_{-5.3}$ M$_{oplus}$) that cannot be firmly ruled out by our data.
We report the confirmation of a transiting planet around the bright, inactive M0.5 V star TOI-1235 (TYC 4384-1735-1, V = 11.5 mag), whose transit signal was detected in the photometric time series of Sectors 14, 20, and 21 of the TESS space mission.
Studies of close-in planets orbiting M dwarfs have suggested that the M dwarf radius valley may be well-explained by distinct formation timescales between enveloped terrestrials, and rocky planets that form at late times in a gas-depleted environment
We report on radial velocity time series for two M0.0V stars, GJ338B and GJ338A, using the CARMENES spectrograph, complemented by ground-telescope photometry from Las Cumbres and Sierra Nevada observatories. We aim to explore the presence of small pl
The interaction between Earth-like exoplanets and the magnetic field of low-mass host stars are considered to produce weak emission signals at radio frequencies. A study using LOFAR data announced the detection of radio emission from the mid M-type d
We report on precise Doppler measurements of L231-32 (TOI-270), a nearby M dwarf ($d=22$ pc, $M_star = 0.39$ M$_odot$, $R_star = 0.38$ R$_odot$), which hosts three transiting planets that were recently discovered using data from the Transiting Exopla