ترغب بنشر مسار تعليمي؟ اضغط هنا

TOI-519 b: a short-period substellar object around an M dwarf validated using multicolour photometry and phase curve analysis

88   0   0.0 ( 0 )
 نشر من قبل Hannu Parviainen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: We report the discovery of TOI-519 b (TIC 218795833), a transiting substellar object (R = 1.07 RJup) orbiting a faint M dwarf (V = 17.35) on a 1.26 d orbit. Brown dwarfs and massive planets orbiting M dwarfs on short-period orbits are rare, but more have already been discovered than expected from planet formation models. TOI-519 is a valuable addition into this group of unlikely systems, and adds towards our understanding of the boundaries of planet formation. Aims: We set out to determine the nature of the Transiting Exoplanet Survey Satellite (TESS ) object of interest TOI-519 b. Methods: Our analysis uses a SPOC-pipeline TESS light curve from Sector 7, multicolour transit photometry observed with MuSCAT2 and MuSCAT, and transit photometry observed with the LCOGT telescopes. We estimate the radius of the transiting object using multicolour transit modelling, and set upper limits for its mass, effective temperature, and Bond albedo using a phase curve model that includes Doppler boosting, ellipsoidal variations, thermal emission, and reflected light components. Results: TOI-519 b is a substellar object with a radius posterior median of 1.07 RJup and 5th and 95th percentiles of 0.66 and 1.20 RJup, respectively, where most of the uncertainty comes from the uncertainty in the stellar radius. The phase curve analysis sets an upper effective temperature limit of 1800 K, an upper Bond albedo limit of 0.49, and a companion mass upper limit of 14 MJup. The companion radius estimate combined with the Teff and mass limits suggests that the companion is more likely a planet than a brown dwarf, but a brown-dwarf scenario is more likely a priori given the lack of known massive planets in 1 day orbits around M dwarfs with Teff < 3800 K, and the existence of some (but few) brown dwarfs.


قيم البحث

اقرأ أيضاً

We report the discovery of TOI 263.01 (TIC 120916706), a transiting substellar object (R = 0.87 RJup) orbiting a faint M3.5~V dwarf (V=18.97) on a 0.56~d orbit. We set out to determine the nature of the TESS planet candidate TOI 263.01 using ground-b ased multicolour transit photometry. The host star is faint, which makes RV confirmation challenging, but the large transit depth makes the candidate suitable for validation through multicolour photometry. Our analysis combines three transits observed simultaneously in r, i, and z_s bands using the MuSCAT2 multicolour imager, three LCOGT-observed transit light curves in g, r, and i bands, a TESS light curve from Sector 3, and a low-resolution spectrum for stellar characterisation observed with the ALFOSC spectrograph. We model the light curves with PyTransit using a transit model that includes a physics-based light contamination component that allows us to estimate the contamination from unresolved sources from the multicolour photometry. This allows us to derive the true planet-star radius ratio marginalised over the contamination allowed by the photometry, and, combined with the stellar radius, gives us a reliable estimate of the objects absolute radius. The ground-based photometry excludes contamination from unresolved sources with a significant colour difference to TOI 263. Further, contamination from sources of same stellar type as the host is constrained to levels where the true radius ratio posterior has a median of 0.217. The median radius ratio corresponds to an absolute planet radius of 0.87 RJup, which confirms the substellar nature of the planet candidate. The object is either a giant planet or a brown dwarf (BD) located deep inside the so-called brown dwarf desert. Both possibilities offer a challenge to current planet/BD formation models and makes 263.01 an object deserving of in-depth follow-up studies.
Studies of close-in planets orbiting M dwarfs have suggested that the M dwarf radius valley may be well-explained by distinct formation timescales between enveloped terrestrials, and rocky planets that form at late times in a gas-depleted environment . This scenario is at odds with the picture that close-in rocky planets form with a primordial gaseous envelope that is subsequently stripped away by some thermally-driven mass loss process. These two physical scenarios make unique predictions of the rocky/enveloped transitions dependence on orbital separation such that studying the compositions of planets within the M dwarf radius valley may be able to establish the dominant physics. Here, we present the discovery of one such keystone planet: the ultra-short period planet TOI-1634 b ($P=0.989$ days, $F=121 F_{oplus}$, $r_p = 1.790^{+0.080}_{-0.081} R_{oplus}$) orbiting a nearby M2 dwarf ($K_s=8.7$, $R_s=0.45 R_{odot}$, $M_s=0.50 M_{odot}$) and whose size and orbital period sit within the M dwarf radius valley. We confirm the TESS-discovered planet candidate using extensive ground-based follow-up campaigns, including a set of 32 precise radial velocity measurements from HARPS-N. We measure a planetary mass of $4.91^{+0.68}_{-0.70} M_{oplus}$, which makes TOI-1634 b inconsistent with an Earth-like composition at $5.9sigma$ and thus requires either an extended gaseous envelope, a large volatile-rich layer, or a rocky portion that is not dominated by iron and silicates to explain its mass and radius. The discovery that the bulk composition of TOI-1634 b is inconsistent with that of the Earth favors the gas-depleted formation mechanism to explain the emergence of the radius valley around M dwarfs with $M_slesssim 0.5 M_{odot}$.
Based on HARPS-N radial velocities (RVs) and TESS photometry, we present a full characterisation of the planetary system orbiting the late G dwarf TOI-561. After the identification of three transiting candidates by TESS, we discovered two additional external planets from RV analysis. RVs cannot confirm the outer TESS transiting candidate, which would also make the system dynamically unstable. We demonstrate that the two transits initially associated with this candidate are instead due to single transits of the two planets discovered using RVs. The four planets orbiting TOI-561 include an ultra-short period (USP) super-Earth (TOI-561 b) with period $P_{rm b} = 0.45$ d, mass $M_{rm b} =1.59 pm 0.36$ M$_oplus$ and radius $R_{rm b}=1.42 pm 0.07$ R$_oplus$, and three mini-Neptunes: TOI-561 c, with $P_{rm c} = 10.78$ d, $M_{rm c} = 5.40 pm 0.98$ M$_oplus$, $R_{rm c}= 2.88 pm 0.09$ R$_oplus$; TOI-561 d, with $P_{rm d} = 25.6$ d, $M_{rm d} = 11.9 pm 1.3$ M$_oplus$, $R_{rm d} = 2.53 pm 0.13$ R$_oplus$; and TOI-561 e, with $P_{rm e} = 77.2$ d, $M_{rm e} = 16.0 pm 2.3$ M$_oplus$, $R_{rm e} = 2.67 pm 0.11$ R$_oplus$. Having a density of $3.0 pm 0.8$ g cm$^{-3}$, TOI-561 b is the lowest density USP planet known to date. Our N-body simulations confirm the stability of the system and predict a strong, anti-correlated, long-term transit time variation signal between planets d and e. The unusual density of the inner super-Earth and the dynamical interactions between the outer planets make TOI-561 an interesting follow-up target.
The Neptune desert is a feature seen in the radius-mass-period plane, whereby a notable dearth of short period, Neptune-like planets is found. Here we report the {it TESS} discovery of a new short-period planet in the Neptune desert, orbiting the G-t ype dwarf TYC,8003-1117-1 (TOI-132). {it TESS} photometry shows transit-like dips at the level of $sim$1400 ppm occurring every $sim$2.11 days. High-precision radial velocity follow-up with HARPS confirmed the planetary nature of the transit signal and provided a semi-amplitude radial velocity variation of $sim$11.5 m s$^{-1}$, which, when combined with the stellar mass of $0.97pm0.06$ $M_{odot}$, provides a planetary mass of 22.83$^{+1.81}_{-1.80}$ $M_{oplus}$. Modeling the {it TESS} high-quality light curve returns a planet radius of 3.43$^{+0.13}_{-0.14}$ $R_{oplus}$, and therefore the planet bulk density is found to be 3.11$^{+0.44}_{-0.450}$ g cm$^{-3}$. Planet structure models suggest that the bulk of the planet mass is in the form of a rocky core, with an atmospheric mass fraction of 4.3$^{+1.2}_{-2.3}$%. TOI-132 b is a {it TESS} Level 1 Science Requirement candidate, and therefore priority follow-up will allow the search for additional planets in the system, whilst helping to constrain low-mass planet formation and evolution models, particularly valuable for better understanding the Neptune desert.
We report the detection of a single transit-like signal in the Kepler data of the slightly evolved F star KIC4918810. The transit duration is ~45 hours, and while the orbital period ($Psim10$ years) is not well constrained, it is one of the longest a mong companions known to transit. We calculate the size of the transiting object to be $R_P = 0.910$ $R_J$. Objects of this size vary by orders of magnitude in their densities, encompassing masses between that of Saturn ($0.3$ $M_J$) and stars above the hydrogen-burning limit (~80 $M_J$). Radial-velocity observations reveal that the companion is unlikely to be a star. The mass posterior is bimodal, indicating a mass of either ~0.24 $M_J$ or ~26 $M_J$. Continued spectroscopic monitoring should either constrain the mass to be planetary or detect the orbital motion, the latter of which would yield a benchmark long-period brown dwarf with a measured mass, radius, and age.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا