ﻻ يوجد ملخص باللغة العربية
Magnetic skyrmions are topologically-distinct swirls of magnetic moments which display particle-like behaviour, including the ability to undergo thermally-driven diffusion. In this paper we study the thermally activated motion of arrays of skyrmions using temperature dependent micromagnetic simulations where the skyrmions form spontaneously. In particular, we study the interaction of skyrmions with grain boundaries, which are a typical feature of sputtered ultrathin films used in experimental devices. We find the interactions lead to two distinct regimes. For longer lag times the grains lead to a reduction in the diffusion coefficient, which is strongest for grain sizes similar to the skyrmion diameter. At shorter lag times the presence of grains enhances the effective diffusion coefficient due to the gyrotropic motion of the skyrmions induced by their interactions with grain boundaries. For grain sizes significantly larger than the skyrmion diameter clustering of the skyrmions occurs in grains with lower magnetic anisotropy.
Current-driven skyrmion motion in random granular films is investigated with interesting findings. For a given current, there exists a critical disorder strength below which its transverse motion could either be boosted below a critical damping or be
Ultrathin ferromagnets with frustrated exchange and the Dzyaloshinskii-Moriya interaction can support topological solitons such as skyrmions and antiskyrmions, which are metastable and can be considered particle-antiparticle counterparts. When spin-o
In this work, the current-induced inertial effects on skyrmions hosted in ferromagnetic systems are studied. {When the dynamics is considered beyond the particle-like description, magnetic skyrmions can deform due to a self-induced field. We perform
A magnetic skyrmion is a topological object that can exist as a solitary embedded in the vast ferromagnetic phase, or coexists with a group of its siblings in various stripy phases as well as skyrmion crystals (SkXs). Isolated skyrmions and skyrmions
Actuation and control of motion in micro-mechanical systems are technological challenges, since they are accompanied by mechanical friction and wear, principal and well known sources of device lifetime reduction. In this theoretical work we propose a