ترغب بنشر مسار تعليمي؟ اضغط هنا

Skyrmion size in skyrmion crystals

152   0   0.0 ( 0 )
 نشر من قبل Haitao Wu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A magnetic skyrmion is a topological object that can exist as a solitary embedded in the vast ferromagnetic phase, or coexists with a group of its siblings in various stripy phases as well as skyrmion crystals (SkXs). Isolated skyrmions and skyrmions in an SkX are circular while a skyrmion in other phases is a stripe of various forms. Unexpectedly, the sizes of the three different types of skyrmions depend on material parameters differently. For chiral magnetic films with exchange stiffness constant $A$, the Dzyaloshinskii-Moriya interaction (DMI) strength $D$, and perpendicular magnetic anisotropy $K$, $kappaequivpi^2D^2/(16AK)=1$ separates isolated skyrmions from condensed skyrmion states. In contrast to isolated skyrmions whose size increases with $D/K$ and is insensitive to $kappall1$ and stripe skyrmions whose width increases with $A/D$ and is insensitive to $kappagg1$, the size of skyrmions in SkXs is inversely proportional to the square root of skyrmion number density and decreases with $A/D$. This finding has important implications in our search for stable smaller skyrmions at the room temperature in applications.



قيم البحث

اقرأ أيضاً

We investigate, within the framework of linear elasticity theory, edge Rayleigh waves of a two-dimensional elastic solid with broken time-reversal and parity symmetries due to a Berry term. As our prime example, we study the elastic edge wave traveli ng along the boundary of a two-dimensional skyrmion lattice hosted inside a thin-film chiral magnet. We find that the direction of propagation of the Rayleigh modes is determined not only by the chirality of the thin-film, but also by the Poisson ratio of the crystal. We discover three qualitatively different regions distinguished by the chirality of the low-frequency edge waves, and study their properties. To illustrate the Rayleigh edge waves in real time, we have carried out finite-difference simulations of the model. Apart from skyrmion crystals, our results are also applicable to edge waves of gyroelastic media and screened Wigner crystals in magnetic fields. Our work opens a pathway towards controlled manipulation of elastic signals along boundaries of crystals with broken time-reversal symmetry.
We show that skyrmions on the surface of a magnetic topological insulator may experience an attractive interaction that leads to the formation of a skyrmion-skyrmion bound state. This is in contrast to the case of skyrmions in a conventional chiral f erromagnet, for which the intrinsic interaction is repulsive. The origin of skyrmion binding in our model is the molecular hybridization of topologically protected electronic orbitals associated with each skyrmion. Attraction between the skyrmions can therefore be controlled by tuning a chemical potential that populates/depopulates the lowest-energy molecular orbital. We find that the skyrmion-skyrmion bound state can be made stable, unstable, or metastable depending on the chemical potential, magnetic field, and easy-axis anisotropy of the underlying ferromagnet, resulting in a rich phase diagram. Finally, we discuss the possibility to realize this effect in a recently synthesized Cr doped ${left(mathrm{Bi}_{2-y}mathrm{Sb}_{y}right)}_{2}mathrm{Te}_3$ heterostructure.
115 - X. R. Wang , X. C. Hu , H. T. Wu 2021
Skyrmions are important in topological quantum field theory for being soliton solutions of a nonlinear sigma model and in information technology for their attractive applications. Skyrmions are believed to be circular and stripy spin textures appeare d in the vicinity of skyrmion crystals are termed spiral, helical, and cycloid spin orders, but not skyrmions. Here we present convincing evidences showing that those stripy spin textures are skyrmions, siblings of circular skyrmions in skyrmion crystals and cousins of isolated circular skyrmions. Specifically, isolated skyrmions are excitations when skyrmion formation energy is positive. The skyrmion morphologies are various stripy structures when the ground states of chiral magnetic films are skyrmions. The density of skyrmion number determines the morphology of condensed skyrmion states. At the extreme of one skyrmion in the whole sample, the skyrmion is a ramified stripe. As the skyrmion number density increases, individual skyrmion shapes gradually change from ramified stripes to rectangular stripes, and eventually to disk-like objects. At a low skyrmion number density, the natural width of stripes is proportional to the ratio between the exchange stiffness constant and Dzyaloshinskii-Moriya interaction coefficient. At a high skyrmion number density, skyrmion crystals are the preferred states. Our findings reveal the nature and properties of stripy spin texture, and open a new avenue for manipulating skyrmions, especially condensed skyrmions such as skyrmion crystals.
Magnetic skyrmions are chiral spin textures that hold great promise as nanoscale information carriers. Since their first observation at room temperature, progress has been made in their current-induced manipulation, with fast motion reported in stray -field-coupled multilayers. However, the complex spin textures with hybrid chiralities and large power dissipation in these multilayers limit their practical implementation and the fundamental understanding of their dynamics. Here, we report on the current-driven motion of Neel skyrmions with diameters in the 100-nm range in an ultrathin Pt/Co/MgO trilayer. We find that these skyrmions can be driven at a speed of 100 m/s and exhibit a drive-dependent skyrmion Hall effect, which is accounted for by the effect of pinning. Our experiments are well substantiated by an analytical model of the skyrmion dynamics as well as by micromagnetic simulations including material inhomogeneities. This good agreement is enabled by the simple skyrmion spin structure in our system and a thorough characterization of its static and dynamical properties.
264 - Ik-Sun Hong , Kyung-Jin Lee 2019
Magnetic skyrmions are of considerable interest for low-power memory and logic devices because of high speed at low current and high stability due to topological protection. We propose a skyrmion field-effect transistor based on a gate-controlled Dzy aloshinskii-Moriya interaction. A key working principle of the proposed skyrmion field-effect transistor is a large transverse motion of skyrmion, caused by an effective equilibrium damping-like spin-orbit torque due to spatially inhomogeneous Dzyaloshinskii-Moriya interaction. This large transverse motion can be categorized as the skyrmion Hall effect, but has been unrecognized previously. The propose device is capable of multi-bit operation and Boolean functions, and thus is expected to serve as a low-power logic device based on the magnetic solitons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا