ترغب بنشر مسار تعليمي؟ اضغط هنا

Current-driven skyrmion motion in granular films

203   0   0.0 ( 0 )
 نشر من قبل Huaiyang Yuan Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Current-driven skyrmion motion in random granular films is investigated with interesting findings. For a given current, there exists a critical disorder strength below which its transverse motion could either be boosted below a critical damping or be hindered above the critical damping, resulting in current and disorder dependences of skyrmion Hall angle. The boosting comes mainly from the random force that is opposite to the driving force (current). The critical damping depends on the current density and disorder strength. However, the longitudinal motion of a skyrmion is always hindered by the disorder. Above the critical disorder strength, skyrmions are pinned. The disorder-induced random force on a skyrmion can be classified as static and kinetic ones, similar to the friction force in the Newtonian mechanics. In the pinning phase, the static (pinning) random force is transverse to the current density. The kinetic random force is opposite to the skyrmion velocity when skyrmions are in motion. Furthermore, we provide strong evidences that the Thiele equation can perfectly describe skyrmion dynamics in granular films. These findings provide insight to skyrmion motion and should be important for skyrmiontronics.



قيم البحث

اقرأ أيضاً

Magnetic skyrmions are topologically-distinct swirls of magnetic moments which display particle-like behaviour, including the ability to undergo thermally-driven diffusion. In this paper we study the thermally activated motion of arrays of skyrmions using temperature dependent micromagnetic simulations where the skyrmions form spontaneously. In particular, we study the interaction of skyrmions with grain boundaries, which are a typical feature of sputtered ultrathin films used in experimental devices. We find the interactions lead to two distinct regimes. For longer lag times the grains lead to a reduction in the diffusion coefficient, which is strongest for grain sizes similar to the skyrmion diameter. At shorter lag times the presence of grains enhances the effective diffusion coefficient due to the gyrotropic motion of the skyrmions induced by their interactions with grain boundaries. For grain sizes significantly larger than the skyrmion diameter clustering of the skyrmions occurs in grains with lower magnetic anisotropy.
A theoretical study of the current-driven dynamics of magnetic skyrmions in disordered perpendicularly-magnetized ultrathin films is presented. The disorder is simulated as a granular structure in which the local anisotropy varies randomly from grain to grain. The skyrmion velocity is computed for different disorder parameters and ensembles. Similar behavior is seen for spin-torques due to in-plane currents and the spin Hall effect, where a pinning regime can be identified at low currents with a transition towards the disorder-free case at higher currents, similar to domain wall motion in disordered films. Moreover, a current-dependent skyrmion Hall effect and fluctuations in the core radius are found, which result from the interaction with the pinning potential.
Magnetic skyrmions are chiral spin textures that hold great promise as nanoscale information carriers. Since their first observation at room temperature, progress has been made in their current-induced manipulation, with fast motion reported in stray -field-coupled multilayers. However, the complex spin textures with hybrid chiralities and large power dissipation in these multilayers limit their practical implementation and the fundamental understanding of their dynamics. Here, we report on the current-driven motion of Neel skyrmions with diameters in the 100-nm range in an ultrathin Pt/Co/MgO trilayer. We find that these skyrmions can be driven at a speed of 100 m/s and exhibit a drive-dependent skyrmion Hall effect, which is accounted for by the effect of pinning. Our experiments are well substantiated by an analytical model of the skyrmion dynamics as well as by micromagnetic simulations including material inhomogeneities. This good agreement is enabled by the simple skyrmion spin structure in our system and a thorough characterization of its static and dynamical properties.
We investigate skyrmion configuration and dynamics in antiferromagnetic thin disks. It is shown that the skyrmion acquires oscillatory dynamics with well-defined amplitude and frequency which may be controlled on demand by the spin-polarized current. Such dynamics are robust in the sense that an interface between two half-disks cannot change the dynamics appreciably. Indeed, the skyrmion keeps its oscillatory despite crossing this interface. The way skyrmion found to do that is by modifying its core region shape so that its total energy is unaltered for several cycles.
Spin pumping is a widely recognized method to generate the spin current in the spintronics, which is acknowledged as a fundamentally dynamic process equivalent to the spin-transfer torque. In this work, we theoretically verify that the oscillating sp in current can be pumped from the microwave-motivated breathing skyrmion. The skyrmion spin pumping can be excited by a relatively low frequency compared with the ferromagnetic resonance (FMR) and the current density is larger than the ordinary FMR spin pumping. Based on the skyrmion spin pumping, we build a high reading-speed racetrack memory model whose reading speed is an order of magnitude higher than the SOT (spin-orbit torque) /STT (spin-transfer torque) skyrmion racetrack. Our work explored the spin pumping phenomenon in the skyrmion, and it may contribute to the applications of the skyrmion-based device.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا