ﻻ يوجد ملخص باللغة العربية
Actuation and control of motion in micro-mechanical systems are technological challenges, since they are accompanied by mechanical friction and wear, principal and well known sources of device lifetime reduction. In this theoretical work we propose a non-contact motion control technique based on the introduction of a tunable magnetic interaction. The latter is realized by coating two non-touching sliding bodies with ferromagnetic films. The resulting dynamics is determined by shape, size and ordering of magnetic domains arising in the films below the Curie temperature. We demonstrate that the domain behavior can be tailored by acting on handles like ferromagnetic coating preparation, external magnetic fields and the finite distance between the plates. In this way, motion control can be achieved without mechanical contact. Moreover, we discuss how such handles can disclose a variety of sliding regimes. Finally, we propose how to practically implement the proposed model sliding system.
The large curvature effects on micromagnetic energy of a thin ferromagnetic film with nonlocal dipolar energy are considered. We predict that the dipolar interaction and surface curvature can produce perpendicular anisotropy which can be controlled b
Ultrathin ferromagnets with frustrated exchange and the Dzyaloshinskii-Moriya interaction can support topological solitons such as skyrmions and antiskyrmions, which are metastable and can be considered particle-antiparticle counterparts. When spin-o
Magnetic skyrmions are topologically-distinct swirls of magnetic moments which display particle-like behaviour, including the ability to undergo thermally-driven diffusion. In this paper we study the thermally activated motion of arrays of skyrmions
We analyze the electric current and magnetic field driven domain wall motion in perpendicularly magnetized ultrathin ferromagnetic films in the presence of interfacial Dzyaloshinskii-Moriya interaction and both out-of-plane and in-plane uniaxial anis
We demonstrate optical manipulation of the position of a domain wall in a dilute magnetic semiconductor, GaMnAsP. Two main contributions are identified. Firstly, photocarrier spin exerts a spin transfer torque on the magnetization via the exchange in