ﻻ يوجد ملخص باللغة العربية
The exact distributed controllability of the semilinear heat equation $partial_{t}y-Delta y + g(y)=f ,1_{omega}$ posed over multi-dimensional and bounded domains, assuming that $gin C^1(mathbb{R})$ satisfies the growth condition $limsup_{rto infty} g(r)/(vert rvert ln^{3/2}vert rvert)=0$ has been obtained by Fernandez-Cara and Zuazua in 2000. The proof based on a non constructive fixed point arguments makes use of precise estimates of the observability constant for a linearized heat equation. In the one dimensional setting, assuming that $g^prime$ does not grow faster than $beta ln^{3/2}vert rvert$ at infinity for $beta>0$ small enough and that $g^prime$ is uniformly Holder continuous on $mathbb{R}$ with exponent $pin [0,1]$, we design a constructive proof yielding an explicit sequence converging to a controlled solution for the semilinear equation, at least with order $1+p$ after a finite number of iterations.
It has been proved by Zuazua in the nineties that the internally controlled semilinear 1D wave equation $partial_{tt}y-partial_{xx}y + g(y)=f 1_{omega}$, with Dirichlet boundary conditions, is exactly controllable in $H^1_0(0,1)cap L^2(0,1)$ with con
A class of optimal control problems of hybrid nature governed by semilinear parabolic equations is considered. These problems involve the optimization of switching times at which the dynamics, the integral cost, and the bounds on the control may chan
The null distributed controllability of the semilinear heat equation $y_t-Delta y + g(y)=f ,1_{omega}$, assuming that $g$ satisfies the growth condition $g(s)/(vert svert log^{3/2}(1+vert svert))rightarrow 0$ as $vert svert rightarrow infty$ and that
We derive a matrix version of Li & Yau--type estimates for positive solutions of semilinear heat equations on Riemannian manifolds with nonnegative sectional curvatures and parallel Ricci tensor, similarly to what R.~Hamilton did in~cite{hamilton7} f
A procedure for the numerical approximation of high-dimensional Hamilton-Jacobi-Bellman (HJB) equations associated to optimal feedback control problems for semilinear parabolic equations is proposed. Its main ingredients are a pseudospectral collocat