ترغب بنشر مسار تعليمي؟ اضغط هنا

Constructive exact control of semilinear 1D wave equations by a least-squares approach

226   0   0.0 ( 0 )
 نشر من قبل Arnaud Munch
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been proved by Zuazua in the nineties that the internally controlled semilinear 1D wave equation $partial_{tt}y-partial_{xx}y + g(y)=f 1_{omega}$, with Dirichlet boundary conditions, is exactly controllable in $H^1_0(0,1)cap L^2(0,1)$ with controls $fin L^2((0,1)times(0,T))$, for any $T>0$ and any nonempty open subset $omega$ of $(0,1)$, assuming that $gin mathcal{C}^1(R)$ does not grow faster than $betavert xvert ln^{2}vert xvert$ at infinity for some $beta>0$ small enough. The proof, based on the Leray-Schauder fixed point theorem, is however not constructive. In this article, we design a constructive proof and algorithm for the exact controllability of semilinear 1D wave equations. Assuming that $g^prime$ does not grow faster than $beta ln^{2}vert xvert$ at infinity for some $beta>0$ small enough and that $g^prime$ is uniformly Holder continuous on $R$ with exponent $sin[0,1]$, we design a least-squares algorithm yielding an explicit sequence converging to a controlled solution for the semilinear equation, at least with order $1+s$ after a finite number of iterations.



قيم البحث

اقرأ أيضاً

The exact distributed controllability of the semilinear heat equation $partial_{t}y-Delta y + g(y)=f ,1_{omega}$ posed over multi-dimensional and bounded domains, assuming that $gin C^1(mathbb{R})$ satisfies the growth condition $limsup_{rto infty} g (r)/(vert rvert ln^{3/2}vert rvert)=0$ has been obtained by Fernandez-Cara and Zuazua in 2000. The proof based on a non constructive fixed point arguments makes use of precise estimates of the observability constant for a linearized heat equation. In the one dimensional setting, assuming that $g^prime$ does not grow faster than $beta ln^{3/2}vert rvert$ at infinity for $beta>0$ small enough and that $g^prime$ is uniformly Holder continuous on $mathbb{R}$ with exponent $pin [0,1]$, we design a constructive proof yielding an explicit sequence converging to a controlled solution for the semilinear equation, at least with order $1+p$ after a finite number of iterations.
The exact distributed controllability of the semilinear wave equation $y_{tt}-y_{xx} + g(y)=f ,1_{omega}$, assuming that $g$ satisfies the growth condition $vert g(s)vert /(vert svert log^{2}(vert svert))rightarrow 0$ as $vert svert rightarrow infty$ and that $g^primein L^infty_{loc}(mathbb{R})$ has been obtained by Zuazua in the nineties. The proof based on a Leray-Schauder fixed point argument makes use of precise estimates of the observability constant for a linearized wave equation. It does not provide however an explicit construction of a null control. Assuming that $g^primein L^infty_{loc}(mathbb{R})$, that $sup_{a,bin mathbb{R},a eq b} vert g^prime(a)-g^{prime}(b)vert/vert a-bvert^r<infty $ for some $rin (0,1]$ and that $g^prime$ satisfies the growth condition $vert g^prime(s)vert/log^{2}(vert svert)rightarrow 0$ as $vert svert rightarrow infty$, we construct an explicit sequence converging strongly to a null control for the solution of the semilinear equation. The method, based on a least-squares approach guarantees the convergence whatever the initial element of the sequence may be. In particular, after a finite number of iterations, the convergence is super linear with rate $1+r$. This general method provides a constructive proof of the exact controllability for the semilinear wave equation.
The exact distributed controllability of the semilinear wave equation $partial_{tt}y-Delta y + g(y)=f ,1_{omega}$ posed over multi-dimensional and bounded domains, assuming that $gin C^1(mathbb{R})$ satisfies the growth condition $limsup_{rto infty} g(r)/(vert rvert ln^{1/2}vert rvert)=0$ has been obtained by Fu, Yong and Zhang in 2007. The proof based on a non constructive Leray-Schauder fixed point theorem makes use of precise estimates of the observability constant for a linearized wave equation. Assuming that $g^prime$ does not grow faster than $beta ln^{1/2}vert rvert$ at infinity for $beta>0$ small enough and that $g^prime$ is uniformly Holder continuous on $mathbb{R}$ with exponent $sin (0,1]$, we design a constructive proof yielding an explicit sequence converging to a controlled solution for the semilinear equation, at least with order $1+s$ after a finite number of iterations.
The null distributed controllability of the semilinear heat equation $y_t-Delta y + g(y)=f ,1_{omega}$, assuming that $g$ satisfies the growth condition $g(s)/(vert svert log^{3/2}(1+vert svert))rightarrow 0$ as $vert svert rightarrow infty$ and that $g^primein L^infty_{loc}(mathbb{R})$ has been obtained by Fernandez-Cara and Zuazua in 2000. The proof based on a fixed point argument makes use of precise estimates of the observability constant for a linearized heat equation. It does not provide however an explicit construction of a null control. Assuming that $g^primein W^{s,infty}(mathbb{R})$ for one $sin (0,1]$, we construct an explicit sequence converging strongly to a null control for the solution of the semilinear equation. The method, based on a least-squares approach, generalizes Newton type methods and guarantees the convergence whatever be the initial element of the sequence. In particular, after a finite number of iterations, the convergence is super linear with a rate equal to $1+s$. Numerical experiments in the one dimensional setting support our analysis.
A characterization of a semilinear elliptic partial differential equation (PDE) on a bounded domain in $mathbb{R}^n$ is given in terms of an infinite-dimensional dynamical system. The dynamical system is on the space of boundary data for the PDE. Thi s is a novel approach to elliptic problems that enables the use of dynamical systems tools in studying the corresponding PDE. The dynamical system is ill-posed, meaning solutions do not exist forwards or backwards in time for generic initial data. We offer a framework in which this ill-posed system can be analyzed. This can be viewed as generalizing the theory of spatial dynamics, which applies to the case of an infinite cylindrical domain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا